Stokes-vector evolution in a weakly anisotropic inhomogeneous medium

The equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of a quasi-isotropic approximation of the geometrical optics method, which provides the consequent asymptotic solution of Maxwell's equations. Our equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2007-10, Vol.24 (10), p.3388-3396
Hauptverfasser: Kravtsov, Yu A, Bieg, B, Bliokh, K Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3396
container_issue 10
container_start_page 3388
container_title Journal of the Optical Society of America. A, Optics, image science, and vision
container_volume 24
creator Kravtsov, Yu A
Bieg, B
Bliokh, K Yu
description The equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of a quasi-isotropic approximation of the geometrical optics method, which provides the consequent asymptotic solution of Maxwell's equations. Our equation generalizes previous results obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable of describing normal mode conversion in inhomogeneous media. Remarkably, evolution of the four-component Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation describing spin precession in ferromagnetic systems. The general theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.
doi_str_mv 10.1364/JOSAA.24.003388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68341911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68341911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-80ad22d976398e57f1280147362775feb42082485db799aca89ea5f82a5a79f23</originalsourceid><addsrcrecordid>eNpFkL1PwzAQxS0EoqUws6FMbGn9GdtjVcqXKnUozJabXMA0iYudFPW_J7SVmO50evfu3Q-hW4LHhGV88rpcTadjyscYM6bUGRoSQXGqBKPnfY8VT6WgeoCuYvzCGPNMyUs0IFITylg2RA-r1m8gpjvIWx8S2Pmqa51vEtckNvkBu6n2iW1c9G3wW5f3809f-w9owHcxqaFwXX2NLkpbRbg51RF6f5y_zZ7TxfLpZTZdpHl_q00VtgWlhZYZ0wqELAlVmHDJMiqlKGHNKVaUK1GspdY2t0qDFaWiVlipS8pG6P7ouw3-u4PYmtrFHKrKHtKYTDFONCG9cHIU5sHHGKA02-BqG_aGYPMHzhzAGcrNEVy_cXey7tb9U__6Eyn2C7QHaNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68341911</pqid></control><display><type>article</type><title>Stokes-vector evolution in a weakly anisotropic inhomogeneous medium</title><source>Optica Publishing Group Journals</source><creator>Kravtsov, Yu A ; Bieg, B ; Bliokh, K Yu</creator><creatorcontrib>Kravtsov, Yu A ; Bieg, B ; Bliokh, K Yu</creatorcontrib><description>The equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of a quasi-isotropic approximation of the geometrical optics method, which provides the consequent asymptotic solution of Maxwell's equations. Our equation generalizes previous results obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable of describing normal mode conversion in inhomogeneous media. Remarkably, evolution of the four-component Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation describing spin precession in ferromagnetic systems. The general theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.</description><identifier>ISSN: 1084-7529</identifier><identifier>EISSN: 1520-8532</identifier><identifier>DOI: 10.1364/JOSAA.24.003388</identifier><identifier>PMID: 17912336</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of the Optical Society of America. A, Optics, image science, and vision, 2007-10, Vol.24 (10), p.3388-3396</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-80ad22d976398e57f1280147362775feb42082485db799aca89ea5f82a5a79f23</citedby><cites>FETCH-LOGICAL-c336t-80ad22d976398e57f1280147362775feb42082485db799aca89ea5f82a5a79f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17912336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kravtsov, Yu A</creatorcontrib><creatorcontrib>Bieg, B</creatorcontrib><creatorcontrib>Bliokh, K Yu</creatorcontrib><title>Stokes-vector evolution in a weakly anisotropic inhomogeneous medium</title><title>Journal of the Optical Society of America. A, Optics, image science, and vision</title><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><description>The equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of a quasi-isotropic approximation of the geometrical optics method, which provides the consequent asymptotic solution of Maxwell's equations. Our equation generalizes previous results obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable of describing normal mode conversion in inhomogeneous media. Remarkably, evolution of the four-component Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation describing spin precession in ferromagnetic systems. The general theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.</description><issn>1084-7529</issn><issn>1520-8532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkL1PwzAQxS0EoqUws6FMbGn9GdtjVcqXKnUozJabXMA0iYudFPW_J7SVmO50evfu3Q-hW4LHhGV88rpcTadjyscYM6bUGRoSQXGqBKPnfY8VT6WgeoCuYvzCGPNMyUs0IFITylg2RA-r1m8gpjvIWx8S2Pmqa51vEtckNvkBu6n2iW1c9G3wW5f3809f-w9owHcxqaFwXX2NLkpbRbg51RF6f5y_zZ7TxfLpZTZdpHl_q00VtgWlhZYZ0wqELAlVmHDJMiqlKGHNKVaUK1GspdY2t0qDFaWiVlipS8pG6P7ouw3-u4PYmtrFHKrKHtKYTDFONCG9cHIU5sHHGKA02-BqG_aGYPMHzhzAGcrNEVy_cXey7tb9U__6Eyn2C7QHaNg</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Kravtsov, Yu A</creator><creator>Bieg, B</creator><creator>Bliokh, K Yu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071001</creationdate><title>Stokes-vector evolution in a weakly anisotropic inhomogeneous medium</title><author>Kravtsov, Yu A ; Bieg, B ; Bliokh, K Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-80ad22d976398e57f1280147362775feb42082485db799aca89ea5f82a5a79f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kravtsov, Yu A</creatorcontrib><creatorcontrib>Bieg, B</creatorcontrib><creatorcontrib>Bliokh, K Yu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kravtsov, Yu A</au><au>Bieg, B</au><au>Bliokh, K Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stokes-vector evolution in a weakly anisotropic inhomogeneous medium</atitle><jtitle>Journal of the Optical Society of America. A, Optics, image science, and vision</jtitle><addtitle>J Opt Soc Am A Opt Image Sci Vis</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>24</volume><issue>10</issue><spage>3388</spage><epage>3396</epage><pages>3388-3396</pages><issn>1084-7529</issn><eissn>1520-8532</eissn><abstract>The equation for evolution of the four-component Stokes vector in weakly anisotropic and smoothly inhomogeneous media is derived on the basis of a quasi-isotropic approximation of the geometrical optics method, which provides the consequent asymptotic solution of Maxwell's equations. Our equation generalizes previous results obtained for the normal propagation of electromagnetic waves in stratified media. It is valid for curvilinear rays with torsion and is capable of describing normal mode conversion in inhomogeneous media. Remarkably, evolution of the four-component Stokes vector is described by the Bargmann-Michel-Telegdi equation for relativistic spin precession, whereas the equation for the three-component Stokes vector resembles the Landau-Lifshitz equation describing spin precession in ferromagnetic systems. The general theory is applied for analysis of polarization evolution in a magnetized plasma. We also emphasize fundamental features of the non-Abelian polarization evolution in anisotropic inhomogeneous media and illustrate them by simple examples.</abstract><cop>United States</cop><pmid>17912336</pmid><doi>10.1364/JOSAA.24.003388</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1084-7529
ispartof Journal of the Optical Society of America. A, Optics, image science, and vision, 2007-10, Vol.24 (10), p.3388-3396
issn 1084-7529
1520-8532
language eng
recordid cdi_proquest_miscellaneous_68341911
source Optica Publishing Group Journals
title Stokes-vector evolution in a weakly anisotropic inhomogeneous medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stokes-vector%20evolution%20in%20a%20weakly%20anisotropic%20inhomogeneous%20medium&rft.jtitle=Journal%20of%20the%20Optical%20Society%20of%20America.%20A,%20Optics,%20image%20science,%20and%20vision&rft.au=Kravtsov,%20Yu%20A&rft.date=2007-10-01&rft.volume=24&rft.issue=10&rft.spage=3388&rft.epage=3396&rft.pages=3388-3396&rft.issn=1084-7529&rft.eissn=1520-8532&rft_id=info:doi/10.1364/JOSAA.24.003388&rft_dat=%3Cproquest_cross%3E68341911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68341911&rft_id=info:pmid/17912336&rfr_iscdi=true