Ascorbic acid monoglucoside as antioxidant and radioprotector

Ascorbic acid monoglucoside (AsAG), a glucoside derivative of ascorbic acid, has been examined for its antioxidant and radioprotective abilities. AsAG neutralized 1, 1 diphenyl -2-picryl-hydrazyl (DPPH), a stable free radical in a concentration dependent manner thus indicating its antioxidant abilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radiation research 2007-09, Vol.48 (5), p.369-376
Hauptverfasser: Mathew, Dani, Nair, Cherupally Krishnan K, Jacob, Jasmin A, Biswas, Nandita, Mukherjee, Tulsi, Kapoor, Sudhir, Kagiya, Tsutomu V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ascorbic acid monoglucoside (AsAG), a glucoside derivative of ascorbic acid, has been examined for its antioxidant and radioprotective abilities. AsAG neutralized 1, 1 diphenyl -2-picryl-hydrazyl (DPPH), a stable free radical in a concentration dependent manner thus indicating its antioxidant ability. AsAG protected mice liver tissues in vitro from peroxidative damage in lipids (measured as TBARS) resulting from 25Gy gamma irradiation. It also protected plasmid pBR322 DNA from gamma-radiation induced strand breaks as evidenced from studies on agarose gel electrophoresis of the plasmid DNA after radiation exposure. Oral administration of AsAG to mice prior to whole body gamma radiation exposure (4Gy) resulted in a reduction of radiation induced lipid peroxides in the liver tissue indicating in vivo radiation protection of membranes. Pulse radiolysis studies indicated that AsAG offered radioprotection by scavenging free radicals. The rate constants for the reactions OH and N(3) radicals with AsAG were determined to be 6.4 x 10(9) dm(3) mol(-1) s(-1) and 2.3 x 10(9) dm(3) mol(-1) s(-1), respectively at pH 7. It was observed that AsAG radicals undergo conjugation as the pH of the solution is raised to 11 in the case of a one-electron oxidation reaction. As the OH(*) radical adds to the ring, the conjugation effect starts appearing at pH 10.
ISSN:0449-3060
1349-9157
DOI:10.1269/jrr.07007