Multiple roles of M-CSF in human osteoclastogenesis

Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2007-10, Vol.102 (3), p.759-768
Hauptverfasser: Hodge, Jason M., Kirkland, Mark A., Nicholson, Geoffrey C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 768
container_issue 3
container_start_page 759
container_title Journal of cellular biochemistry
container_volume 102
creator Hodge, Jason M.
Kirkland, Mark A.
Nicholson, Geoffrey C.
description Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jcb.21331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68308583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68308583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</originalsourceid><addsrcrecordid>eNp1kL1OwzAYRS0EoqUw8AIoExJDWv8ljkcItAXRIlEQoxU7XyAlqUucCPr2BFJgYrrLuWc4CB0TPCQY09HS6CEljJEd1CdYCp-HnO-iPhYM-5QR2kMHzi0xxlIyuo96RAQkDAjrIzZrijpfF-BVtgDn2cyb-fFi7OUr76Upk5VnXQ3WFImr7TOswOXuEO1lSeHgaLsD9Di-eoin_u3d5Do-v_UNp4L4lGtIsU4DAZIxqQmOQgkQiSzkYFKpA5JCIIzhUoTcpFpLacKMEEmM5hGwATrtvOvKvjXgalXmzkBRJCuwjVNhxHAURKwFzzrQVNa5CjK1rvIyqTaKYPVVSLWF1Hehlj3ZShtdQvpHbpO0wKgD3vMCNv-b1E188aP0u0fepvr4fSTVqwoFE4F6mk_UfHpPp7NFpC7ZJ8bofag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68308583</pqid></control><display><type>article</type><title>Multiple roles of M-CSF in human osteoclastogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hodge, Jason M. ; Kirkland, Mark A. ; Nicholson, Geoffrey C.</creator><creatorcontrib>Hodge, Jason M. ; Kirkland, Mark A. ; Nicholson, Geoffrey C.</creatorcontrib><description>Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.21331</identifier><identifier>PMID: 17516513</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bone Resorption ; Cell Differentiation ; cell fusion ; Cell Proliferation ; Cell Survival ; Cells, Cultured ; CFU-GM ; Cytoplasm - metabolism ; differentiation ; Fetal Blood - cytology ; Granulocyte-Macrophage Colony-Stimulating Factor - metabolism ; Humans ; M-CSF ; Macrophage Colony-Stimulating Factor - metabolism ; Macrophage Colony-Stimulating Factor - physiology ; Membrane Glycoproteins - metabolism ; Models, Biological ; osteoclastogenesis ; Osteoclasts - cytology ; Osteoclasts - metabolism ; proliferation ; Signal Transduction ; Time Factors</subject><ispartof>Journal of cellular biochemistry, 2007-10, Vol.102 (3), p.759-768</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</citedby><cites>FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.21331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.21331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17516513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodge, Jason M.</creatorcontrib><creatorcontrib>Kirkland, Mark A.</creatorcontrib><creatorcontrib>Nicholson, Geoffrey C.</creatorcontrib><title>Multiple roles of M-CSF in human osteoclastogenesis</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc.</description><subject>Bone Resorption</subject><subject>Cell Differentiation</subject><subject>cell fusion</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>CFU-GM</subject><subject>Cytoplasm - metabolism</subject><subject>differentiation</subject><subject>Fetal Blood - cytology</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Humans</subject><subject>M-CSF</subject><subject>Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Macrophage Colony-Stimulating Factor - physiology</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Models, Biological</subject><subject>osteoclastogenesis</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - metabolism</subject><subject>proliferation</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1OwzAYRS0EoqUw8AIoExJDWv8ljkcItAXRIlEQoxU7XyAlqUucCPr2BFJgYrrLuWc4CB0TPCQY09HS6CEljJEd1CdYCp-HnO-iPhYM-5QR2kMHzi0xxlIyuo96RAQkDAjrIzZrijpfF-BVtgDn2cyb-fFi7OUr76Upk5VnXQ3WFImr7TOswOXuEO1lSeHgaLsD9Di-eoin_u3d5Do-v_UNp4L4lGtIsU4DAZIxqQmOQgkQiSzkYFKpA5JCIIzhUoTcpFpLacKMEEmM5hGwATrtvOvKvjXgalXmzkBRJCuwjVNhxHAURKwFzzrQVNa5CjK1rvIyqTaKYPVVSLWF1Hehlj3ZShtdQvpHbpO0wKgD3vMCNv-b1E188aP0u0fepvr4fSTVqwoFE4F6mk_UfHpPp7NFpC7ZJ8bofag</recordid><startdate>20071015</startdate><enddate>20071015</enddate><creator>Hodge, Jason M.</creator><creator>Kirkland, Mark A.</creator><creator>Nicholson, Geoffrey C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071015</creationdate><title>Multiple roles of M-CSF in human osteoclastogenesis</title><author>Hodge, Jason M. ; Kirkland, Mark A. ; Nicholson, Geoffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bone Resorption</topic><topic>Cell Differentiation</topic><topic>cell fusion</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>CFU-GM</topic><topic>Cytoplasm - metabolism</topic><topic>differentiation</topic><topic>Fetal Blood - cytology</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Humans</topic><topic>M-CSF</topic><topic>Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Macrophage Colony-Stimulating Factor - physiology</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Models, Biological</topic><topic>osteoclastogenesis</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - metabolism</topic><topic>proliferation</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodge, Jason M.</creatorcontrib><creatorcontrib>Kirkland, Mark A.</creatorcontrib><creatorcontrib>Nicholson, Geoffrey C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodge, Jason M.</au><au>Kirkland, Mark A.</au><au>Nicholson, Geoffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple roles of M-CSF in human osteoclastogenesis</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2007-10-15</date><risdate>2007</risdate><volume>102</volume><issue>3</issue><spage>759</spage><epage>768</epage><pages>759-768</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17516513</pmid><doi>10.1002/jcb.21331</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2007-10, Vol.102 (3), p.759-768
issn 0730-2312
1097-4644
language eng
recordid cdi_proquest_miscellaneous_68308583
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bone Resorption
Cell Differentiation
cell fusion
Cell Proliferation
Cell Survival
Cells, Cultured
CFU-GM
Cytoplasm - metabolism
differentiation
Fetal Blood - cytology
Granulocyte-Macrophage Colony-Stimulating Factor - metabolism
Humans
M-CSF
Macrophage Colony-Stimulating Factor - metabolism
Macrophage Colony-Stimulating Factor - physiology
Membrane Glycoproteins - metabolism
Models, Biological
osteoclastogenesis
Osteoclasts - cytology
Osteoclasts - metabolism
proliferation
Signal Transduction
Time Factors
title Multiple roles of M-CSF in human osteoclastogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20roles%20of%20M-CSF%20in%20human%20osteoclastogenesis&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Hodge,%20Jason%20M.&rft.date=2007-10-15&rft.volume=102&rft.issue=3&rft.spage=759&rft.epage=768&rft.pages=759-768&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.21331&rft_dat=%3Cproquest_cross%3E68308583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68308583&rft_id=info:pmid/17516513&rfr_iscdi=true