Multiple roles of M-CSF in human osteoclastogenesis
Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2007-10, Vol.102 (3), p.759-768 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 768 |
---|---|
container_issue | 3 |
container_start_page | 759 |
container_title | Journal of cellular biochemistry |
container_volume | 102 |
creator | Hodge, Jason M. Kirkland, Mark A. Nicholson, Geoffrey C. |
description | Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jcb.21331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68308583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68308583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</originalsourceid><addsrcrecordid>eNp1kL1OwzAYRS0EoqUw8AIoExJDWv8ljkcItAXRIlEQoxU7XyAlqUucCPr2BFJgYrrLuWc4CB0TPCQY09HS6CEljJEd1CdYCp-HnO-iPhYM-5QR2kMHzi0xxlIyuo96RAQkDAjrIzZrijpfF-BVtgDn2cyb-fFi7OUr76Upk5VnXQ3WFImr7TOswOXuEO1lSeHgaLsD9Di-eoin_u3d5Do-v_UNp4L4lGtIsU4DAZIxqQmOQgkQiSzkYFKpA5JCIIzhUoTcpFpLacKMEEmM5hGwATrtvOvKvjXgalXmzkBRJCuwjVNhxHAURKwFzzrQVNa5CjK1rvIyqTaKYPVVSLWF1Hehlj3ZShtdQvpHbpO0wKgD3vMCNv-b1E188aP0u0fepvr4fSTVqwoFE4F6mk_UfHpPp7NFpC7ZJ8bofag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68308583</pqid></control><display><type>article</type><title>Multiple roles of M-CSF in human osteoclastogenesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hodge, Jason M. ; Kirkland, Mark A. ; Nicholson, Geoffrey C.</creator><creatorcontrib>Hodge, Jason M. ; Kirkland, Mark A. ; Nicholson, Geoffrey C.</creatorcontrib><description>Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.21331</identifier><identifier>PMID: 17516513</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Bone Resorption ; Cell Differentiation ; cell fusion ; Cell Proliferation ; Cell Survival ; Cells, Cultured ; CFU-GM ; Cytoplasm - metabolism ; differentiation ; Fetal Blood - cytology ; Granulocyte-Macrophage Colony-Stimulating Factor - metabolism ; Humans ; M-CSF ; Macrophage Colony-Stimulating Factor - metabolism ; Macrophage Colony-Stimulating Factor - physiology ; Membrane Glycoproteins - metabolism ; Models, Biological ; osteoclastogenesis ; Osteoclasts - cytology ; Osteoclasts - metabolism ; proliferation ; Signal Transduction ; Time Factors</subject><ispartof>Journal of cellular biochemistry, 2007-10, Vol.102 (3), p.759-768</ispartof><rights>Copyright © 2007 Wiley‐Liss, Inc.</rights><rights>(c) 2007 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</citedby><cites>FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.21331$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.21331$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17516513$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hodge, Jason M.</creatorcontrib><creatorcontrib>Kirkland, Mark A.</creatorcontrib><creatorcontrib>Nicholson, Geoffrey C.</creatorcontrib><title>Multiple roles of M-CSF in human osteoclastogenesis</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc.</description><subject>Bone Resorption</subject><subject>Cell Differentiation</subject><subject>cell fusion</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Cells, Cultured</subject><subject>CFU-GM</subject><subject>Cytoplasm - metabolism</subject><subject>differentiation</subject><subject>Fetal Blood - cytology</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Humans</subject><subject>M-CSF</subject><subject>Macrophage Colony-Stimulating Factor - metabolism</subject><subject>Macrophage Colony-Stimulating Factor - physiology</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Models, Biological</subject><subject>osteoclastogenesis</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - metabolism</subject><subject>proliferation</subject><subject>Signal Transduction</subject><subject>Time Factors</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1OwzAYRS0EoqUw8AIoExJDWv8ljkcItAXRIlEQoxU7XyAlqUucCPr2BFJgYrrLuWc4CB0TPCQY09HS6CEljJEd1CdYCp-HnO-iPhYM-5QR2kMHzi0xxlIyuo96RAQkDAjrIzZrijpfF-BVtgDn2cyb-fFi7OUr76Upk5VnXQ3WFImr7TOswOXuEO1lSeHgaLsD9Di-eoin_u3d5Do-v_UNp4L4lGtIsU4DAZIxqQmOQgkQiSzkYFKpA5JCIIzhUoTcpFpLacKMEEmM5hGwATrtvOvKvjXgalXmzkBRJCuwjVNhxHAURKwFzzrQVNa5CjK1rvIyqTaKYPVVSLWF1Hehlj3ZShtdQvpHbpO0wKgD3vMCNv-b1E188aP0u0fepvr4fSTVqwoFE4F6mk_UfHpPp7NFpC7ZJ8bofag</recordid><startdate>20071015</startdate><enddate>20071015</enddate><creator>Hodge, Jason M.</creator><creator>Kirkland, Mark A.</creator><creator>Nicholson, Geoffrey C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071015</creationdate><title>Multiple roles of M-CSF in human osteoclastogenesis</title><author>Hodge, Jason M. ; Kirkland, Mark A. ; Nicholson, Geoffrey C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4271-24bed0bd57e9339b10869ee87f64ecd9b51de57cc49764cdbb99c6f1191cb48e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bone Resorption</topic><topic>Cell Differentiation</topic><topic>cell fusion</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Cells, Cultured</topic><topic>CFU-GM</topic><topic>Cytoplasm - metabolism</topic><topic>differentiation</topic><topic>Fetal Blood - cytology</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Humans</topic><topic>M-CSF</topic><topic>Macrophage Colony-Stimulating Factor - metabolism</topic><topic>Macrophage Colony-Stimulating Factor - physiology</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Models, Biological</topic><topic>osteoclastogenesis</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - metabolism</topic><topic>proliferation</topic><topic>Signal Transduction</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodge, Jason M.</creatorcontrib><creatorcontrib>Kirkland, Mark A.</creatorcontrib><creatorcontrib>Nicholson, Geoffrey C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodge, Jason M.</au><au>Kirkland, Mark A.</au><au>Nicholson, Geoffrey C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple roles of M-CSF in human osteoclastogenesis</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2007-10-15</date><risdate>2007</risdate><volume>102</volume><issue>3</issue><spage>759</spage><epage>768</epage><pages>759-768</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Although the critical role of M‐CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU‐GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M‐CSF. Short‐term treatment of precursors with M‐CSF (10–100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M‐CSF (1–100 ng/mL) for 14 days caused a biphasic concentration‐dependent stimulation of formation, fusion, and resorption peaking at 10–50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time‐course studies using M‐CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M‐CSF treatment. When treatment was restricted to the first 4 days, M‐CSF (25–100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M‐CSF signaling with neutralizing M‐CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M‐CSF during the second week of culture caused a small increase in osteoclast number and a concentration‐dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M‐CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M‐CSF modulates osteoclast‐resorbing activity, but is not required for survival. Modulation of M‐CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption. J. Cell. Biochem. 102: 759–768, 2007. © 2007 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17516513</pmid><doi>10.1002/jcb.21331</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2007-10, Vol.102 (3), p.759-768 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_proquest_miscellaneous_68308583 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bone Resorption Cell Differentiation cell fusion Cell Proliferation Cell Survival Cells, Cultured CFU-GM Cytoplasm - metabolism differentiation Fetal Blood - cytology Granulocyte-Macrophage Colony-Stimulating Factor - metabolism Humans M-CSF Macrophage Colony-Stimulating Factor - metabolism Macrophage Colony-Stimulating Factor - physiology Membrane Glycoproteins - metabolism Models, Biological osteoclastogenesis Osteoclasts - cytology Osteoclasts - metabolism proliferation Signal Transduction Time Factors |
title | Multiple roles of M-CSF in human osteoclastogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20roles%20of%20M-CSF%20in%20human%20osteoclastogenesis&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Hodge,%20Jason%20M.&rft.date=2007-10-15&rft.volume=102&rft.issue=3&rft.spage=759&rft.epage=768&rft.pages=759-768&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.21331&rft_dat=%3Cproquest_cross%3E68308583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68308583&rft_id=info:pmid/17516513&rfr_iscdi=true |