Comparative ultrastructural analyses of platelets and fibrin networks using the murine model of asthma

The murine Balb/c asthma model has been used successfully for a number of in vivo immunological applications and for testing novel therapeutics, and it is a reliable, clinically relevant facsimile of the human disease. Here we investigate whether this model can be used to study other components of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and toxicologic pathology : official journal of the Gesellschaft für Toxikologische Pathologie 2007-10, Vol.59 (2), p.105-114
Hauptverfasser: Pretorius, E., Ekpo, O.E., Smit, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The murine Balb/c asthma model has been used successfully for a number of in vivo immunological applications and for testing novel therapeutics, and it is a reliable, clinically relevant facsimile of the human disease. Here we investigate whether this model can be used to study other components of the human body, e.g. ultrastrucure. In particular, we investigate the effect of the phytomedicine Euphorbia hirta (used to treat asthma), on the ultrastructure of fibrin as well as platelets, cellular structures that both play an important role in the coagulation process. Hydrocortisone is used as positive control. Ultrastructure of the fibrin networks and platelets of control mice were compared to mice that were asthmatic, treated with two concentrations of hydrocortisone and one concentration of the plant material. Results indicate control mice possess major, thick fibers and minor thin fibers as well as tight round platelet aggregates with typical pseudopodia formation. Minor fibers of asthmatic mice have a netlike appearance covering the major fibers, while the platelets seem to form loosely connected, granular aggregates. Both concentrations of hydrocortisone make the fibrin more fragile and that platelet morphology changes form a tight platelet aggregate to a more granular aggregate not closely fused to each other. We conclude that E. hirta does not impact on the fragility of the fibrin and that it prevents the minor fibers to form the dense netlike layer over the major fibers, as is seen in untreated asthmatic mice. This ultrastructural morphology might give us better insight into asthma and the possible new treatment regimes.
ISSN:0940-2993
1618-1433
DOI:10.1016/j.etp.2007.02.011