Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry

Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2007-09, Vol.46 (3), p.740-748
Hauptverfasser: Bioulac‐Sage, Paulette, Rebouissou, Sandra, Thomas, Cristel, Blanc, Jean‐Frédéric, Saric, Jean, Sa Cunha, Antonio, Rullier, Anne, Cubel, Gaëlle, Couchy, Gabrielle, Imbeaud, Sandrine, Balabaud, Charles, Zucman‐Rossi, Jessica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 748
container_issue 3
container_start_page 740
container_title Hepatology (Baltimore, Md.)
container_volume 46
creator Bioulac‐Sage, Paulette
Rebouissou, Sandra
Thomas, Cristel
Blanc, Jean‐Frédéric
Saric, Jean
Sa Cunha, Antonio
Rullier, Anne
Cubel, Gaëlle
Couchy, Gabrielle
Imbeaud, Sandrine
Balabaud, Charles
Zucman‐Rossi, Jessica
description Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P < 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P < 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.)
doi_str_mv 10.1002/hep.21743
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68296668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68296668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgiq4fB_-A9KLgoZqkadIcZVFXWNCDXi3TdOpG-2XSIv33RrfgydPA8PAO8xJyyugVo5Rfb7C_4kyJZIcsWMpVnCQp3SULyhWNNUv0ATn0_p1SqgXP9skBU1ImgqkFeV1hD0NnsK7HGlwEJbZdA5Efi2HqMTI1eG8ra2CwXRuN3rZvUdPVaH55A-4DnY-gLSPbNGPbbawPcRtswnTTMdmroPZ4Ms8j8nJ3-7xcxevH-4flzTo2idRJnNESVJkWQmgtUllIVmEFSqZZZpQGI7TSnEnOlVAGRBk2aLThFUeVSVEkR-Rim9u77nNEP-Th_s9T0GI3-lxmXEspswAvt9C4znuHVd47G76YckbznzLzUGb-W2awZ3PoWDRY_sm5vQDOZwDeQF05aI31f05TkWopgrveui9b4_T_xXx1-7Q9_Q0PQY1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68296668</pqid></control><display><type>article</type><title>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bioulac‐Sage, Paulette ; Rebouissou, Sandra ; Thomas, Cristel ; Blanc, Jean‐Frédéric ; Saric, Jean ; Sa Cunha, Antonio ; Rullier, Anne ; Cubel, Gaëlle ; Couchy, Gabrielle ; Imbeaud, Sandrine ; Balabaud, Charles ; Zucman‐Rossi, Jessica</creator><creatorcontrib>Bioulac‐Sage, Paulette ; Rebouissou, Sandra ; Thomas, Cristel ; Blanc, Jean‐Frédéric ; Saric, Jean ; Sa Cunha, Antonio ; Rullier, Anne ; Cubel, Gaëlle ; Couchy, Gabrielle ; Imbeaud, Sandrine ; Balabaud, Charles ; Zucman‐Rossi, Jessica</creatorcontrib><description>Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P &lt; 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P &lt; 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.)</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.21743</identifier><identifier>PMID: 17663417</identifier><identifier>CODEN: HPTLD9</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenoma, Liver Cell - classification ; Adenoma, Liver Cell - pathology ; Adult ; beta Catenin - metabolism ; Biological and medical sciences ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Dermatology ; Fatty Acid-Binding Proteins - analysis ; Fatty Acid-Binding Proteins - genetics ; Fatty Acid-Binding Proteins - metabolism ; Female ; Gastroenterology. Liver. Pancreas. Abdomen ; Glucuronosyltransferase - analysis ; Glucuronosyltransferase - genetics ; Glucuronosyltransferase - metabolism ; Glutamate-Ammonia Ligase - analysis ; Glutamate-Ammonia Ligase - genetics ; Glutamate-Ammonia Ligase - metabolism ; Hepatocyte Nuclear Factor 1-alpha - analysis ; Hepatocyte Nuclear Factor 1-alpha - genetics ; Hepatocyte Nuclear Factor 1-alpha - metabolism ; Humans ; Immunohistochemistry - methods ; Liver Neoplasms - classification ; Liver Neoplasms - pathology ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Male ; Medical sciences ; Tumors ; Vascular disorders of the skin</subject><ispartof>Hepatology (Baltimore, Md.), 2007-09, Vol.46 (3), p.740-748</ispartof><rights>Copyright © 2007 American Association for the Study of Liver Diseases</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</citedby><cites>FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.21743$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.21743$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19045964$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17663417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bioulac‐Sage, Paulette</creatorcontrib><creatorcontrib>Rebouissou, Sandra</creatorcontrib><creatorcontrib>Thomas, Cristel</creatorcontrib><creatorcontrib>Blanc, Jean‐Frédéric</creatorcontrib><creatorcontrib>Saric, Jean</creatorcontrib><creatorcontrib>Sa Cunha, Antonio</creatorcontrib><creatorcontrib>Rullier, Anne</creatorcontrib><creatorcontrib>Cubel, Gaëlle</creatorcontrib><creatorcontrib>Couchy, Gabrielle</creatorcontrib><creatorcontrib>Imbeaud, Sandrine</creatorcontrib><creatorcontrib>Balabaud, Charles</creatorcontrib><creatorcontrib>Zucman‐Rossi, Jessica</creatorcontrib><title>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P &lt; 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P &lt; 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.)</description><subject>Adenoma, Liver Cell - classification</subject><subject>Adenoma, Liver Cell - pathology</subject><subject>Adult</subject><subject>beta Catenin - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Dermatology</subject><subject>Fatty Acid-Binding Proteins - analysis</subject><subject>Fatty Acid-Binding Proteins - genetics</subject><subject>Fatty Acid-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Glucuronosyltransferase - analysis</subject><subject>Glucuronosyltransferase - genetics</subject><subject>Glucuronosyltransferase - metabolism</subject><subject>Glutamate-Ammonia Ligase - analysis</subject><subject>Glutamate-Ammonia Ligase - genetics</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Hepatocyte Nuclear Factor 1-alpha - analysis</subject><subject>Hepatocyte Nuclear Factor 1-alpha - genetics</subject><subject>Hepatocyte Nuclear Factor 1-alpha - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry - methods</subject><subject>Liver Neoplasms - classification</subject><subject>Liver Neoplasms - pathology</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Tumors</subject><subject>Vascular disorders of the skin</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LxDAQBuAgiq4fB_-A9KLgoZqkadIcZVFXWNCDXi3TdOpG-2XSIv33RrfgydPA8PAO8xJyyugVo5Rfb7C_4kyJZIcsWMpVnCQp3SULyhWNNUv0ATn0_p1SqgXP9skBU1ImgqkFeV1hD0NnsK7HGlwEJbZdA5Efi2HqMTI1eG8ra2CwXRuN3rZvUdPVaH55A-4DnY-gLSPbNGPbbawPcRtswnTTMdmroPZ4Ms8j8nJ3-7xcxevH-4flzTo2idRJnNESVJkWQmgtUllIVmEFSqZZZpQGI7TSnEnOlVAGRBk2aLThFUeVSVEkR-Rim9u77nNEP-Th_s9T0GI3-lxmXEspswAvt9C4znuHVd47G76YckbznzLzUGb-W2awZ3PoWDRY_sm5vQDOZwDeQF05aI31f05TkWopgrveui9b4_T_xXx1-7Q9_Q0PQY1E</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Bioulac‐Sage, Paulette</creator><creator>Rebouissou, Sandra</creator><creator>Thomas, Cristel</creator><creator>Blanc, Jean‐Frédéric</creator><creator>Saric, Jean</creator><creator>Sa Cunha, Antonio</creator><creator>Rullier, Anne</creator><creator>Cubel, Gaëlle</creator><creator>Couchy, Gabrielle</creator><creator>Imbeaud, Sandrine</creator><creator>Balabaud, Charles</creator><creator>Zucman‐Rossi, Jessica</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</title><author>Bioulac‐Sage, Paulette ; Rebouissou, Sandra ; Thomas, Cristel ; Blanc, Jean‐Frédéric ; Saric, Jean ; Sa Cunha, Antonio ; Rullier, Anne ; Cubel, Gaëlle ; Couchy, Gabrielle ; Imbeaud, Sandrine ; Balabaud, Charles ; Zucman‐Rossi, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adenoma, Liver Cell - classification</topic><topic>Adenoma, Liver Cell - pathology</topic><topic>Adult</topic><topic>beta Catenin - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Dermatology</topic><topic>Fatty Acid-Binding Proteins - analysis</topic><topic>Fatty Acid-Binding Proteins - genetics</topic><topic>Fatty Acid-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Glucuronosyltransferase - analysis</topic><topic>Glucuronosyltransferase - genetics</topic><topic>Glucuronosyltransferase - metabolism</topic><topic>Glutamate-Ammonia Ligase - analysis</topic><topic>Glutamate-Ammonia Ligase - genetics</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Hepatocyte Nuclear Factor 1-alpha - analysis</topic><topic>Hepatocyte Nuclear Factor 1-alpha - genetics</topic><topic>Hepatocyte Nuclear Factor 1-alpha - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry - methods</topic><topic>Liver Neoplasms - classification</topic><topic>Liver Neoplasms - pathology</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Tumors</topic><topic>Vascular disorders of the skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bioulac‐Sage, Paulette</creatorcontrib><creatorcontrib>Rebouissou, Sandra</creatorcontrib><creatorcontrib>Thomas, Cristel</creatorcontrib><creatorcontrib>Blanc, Jean‐Frédéric</creatorcontrib><creatorcontrib>Saric, Jean</creatorcontrib><creatorcontrib>Sa Cunha, Antonio</creatorcontrib><creatorcontrib>Rullier, Anne</creatorcontrib><creatorcontrib>Cubel, Gaëlle</creatorcontrib><creatorcontrib>Couchy, Gabrielle</creatorcontrib><creatorcontrib>Imbeaud, Sandrine</creatorcontrib><creatorcontrib>Balabaud, Charles</creatorcontrib><creatorcontrib>Zucman‐Rossi, Jessica</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bioulac‐Sage, Paulette</au><au>Rebouissou, Sandra</au><au>Thomas, Cristel</au><au>Blanc, Jean‐Frédéric</au><au>Saric, Jean</au><au>Sa Cunha, Antonio</au><au>Rullier, Anne</au><au>Cubel, Gaëlle</au><au>Couchy, Gabrielle</au><au>Imbeaud, Sandrine</au><au>Balabaud, Charles</au><au>Zucman‐Rossi, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2007-09</date><risdate>2007</risdate><volume>46</volume><issue>3</issue><spage>740</spage><epage>748</epage><pages>740-748</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><coden>HPTLD9</coden><abstract>Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P &lt; 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P &lt; 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.)</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17663417</pmid><doi>10.1002/hep.21743</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2007-09, Vol.46 (3), p.740-748
issn 0270-9139
1527-3350
language eng
recordid cdi_proquest_miscellaneous_68296668
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adenoma, Liver Cell - classification
Adenoma, Liver Cell - pathology
Adult
beta Catenin - metabolism
Biological and medical sciences
Biomarkers, Tumor - analysis
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Dermatology
Fatty Acid-Binding Proteins - analysis
Fatty Acid-Binding Proteins - genetics
Fatty Acid-Binding Proteins - metabolism
Female
Gastroenterology. Liver. Pancreas. Abdomen
Glucuronosyltransferase - analysis
Glucuronosyltransferase - genetics
Glucuronosyltransferase - metabolism
Glutamate-Ammonia Ligase - analysis
Glutamate-Ammonia Ligase - genetics
Glutamate-Ammonia Ligase - metabolism
Hepatocyte Nuclear Factor 1-alpha - analysis
Hepatocyte Nuclear Factor 1-alpha - genetics
Hepatocyte Nuclear Factor 1-alpha - metabolism
Humans
Immunohistochemistry - methods
Liver Neoplasms - classification
Liver Neoplasms - pathology
Liver. Biliary tract. Portal circulation. Exocrine pancreas
Male
Medical sciences
Tumors
Vascular disorders of the skin
title Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatocellular%20adenoma%20subtype%20classification%20using%20molecular%20markers%20and%20immunohistochemistry&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Bioulac%E2%80%90Sage,%20Paulette&rft.date=2007-09&rft.volume=46&rft.issue=3&rft.spage=740&rft.epage=748&rft.pages=740-748&rft.issn=0270-9139&rft.eissn=1527-3350&rft.coden=HPTLD9&rft_id=info:doi/10.1002/hep.21743&rft_dat=%3Cproquest_cross%3E68296668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68296668&rft_id=info:pmid/17663417&rfr_iscdi=true