Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry
Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription poly...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2007-09, Vol.46 (3), p.740-748 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | 3 |
container_start_page | 740 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 46 |
creator | Bioulac‐Sage, Paulette Rebouissou, Sandra Thomas, Cristel Blanc, Jean‐Frédéric Saric, Jean Sa Cunha, Antonio Rullier, Anne Cubel, Gaëlle Couchy, Gabrielle Imbeaud, Sandrine Balabaud, Charles Zucman‐Rossi, Jessica |
description | Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P < 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P < 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.) |
doi_str_mv | 10.1002/hep.21743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68296668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68296668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgiq4fB_-A9KLgoZqkadIcZVFXWNCDXi3TdOpG-2XSIv33RrfgydPA8PAO8xJyyugVo5Rfb7C_4kyJZIcsWMpVnCQp3SULyhWNNUv0ATn0_p1SqgXP9skBU1ImgqkFeV1hD0NnsK7HGlwEJbZdA5Efi2HqMTI1eG8ra2CwXRuN3rZvUdPVaH55A-4DnY-gLSPbNGPbbawPcRtswnTTMdmroPZ4Ms8j8nJ3-7xcxevH-4flzTo2idRJnNESVJkWQmgtUllIVmEFSqZZZpQGI7TSnEnOlVAGRBk2aLThFUeVSVEkR-Rim9u77nNEP-Th_s9T0GI3-lxmXEspswAvt9C4znuHVd47G76YckbznzLzUGb-W2awZ3PoWDRY_sm5vQDOZwDeQF05aI31f05TkWopgrveui9b4_T_xXx1-7Q9_Q0PQY1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68296668</pqid></control><display><type>article</type><title>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bioulac‐Sage, Paulette ; Rebouissou, Sandra ; Thomas, Cristel ; Blanc, Jean‐Frédéric ; Saric, Jean ; Sa Cunha, Antonio ; Rullier, Anne ; Cubel, Gaëlle ; Couchy, Gabrielle ; Imbeaud, Sandrine ; Balabaud, Charles ; Zucman‐Rossi, Jessica</creator><creatorcontrib>Bioulac‐Sage, Paulette ; Rebouissou, Sandra ; Thomas, Cristel ; Blanc, Jean‐Frédéric ; Saric, Jean ; Sa Cunha, Antonio ; Rullier, Anne ; Cubel, Gaëlle ; Couchy, Gabrielle ; Imbeaud, Sandrine ; Balabaud, Charles ; Zucman‐Rossi, Jessica</creatorcontrib><description>Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P < 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P < 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.)</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.21743</identifier><identifier>PMID: 17663417</identifier><identifier>CODEN: HPTLD9</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenoma, Liver Cell - classification ; Adenoma, Liver Cell - pathology ; Adult ; beta Catenin - metabolism ; Biological and medical sciences ; Biomarkers, Tumor - analysis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Dermatology ; Fatty Acid-Binding Proteins - analysis ; Fatty Acid-Binding Proteins - genetics ; Fatty Acid-Binding Proteins - metabolism ; Female ; Gastroenterology. Liver. Pancreas. Abdomen ; Glucuronosyltransferase - analysis ; Glucuronosyltransferase - genetics ; Glucuronosyltransferase - metabolism ; Glutamate-Ammonia Ligase - analysis ; Glutamate-Ammonia Ligase - genetics ; Glutamate-Ammonia Ligase - metabolism ; Hepatocyte Nuclear Factor 1-alpha - analysis ; Hepatocyte Nuclear Factor 1-alpha - genetics ; Hepatocyte Nuclear Factor 1-alpha - metabolism ; Humans ; Immunohistochemistry - methods ; Liver Neoplasms - classification ; Liver Neoplasms - pathology ; Liver. Biliary tract. Portal circulation. Exocrine pancreas ; Male ; Medical sciences ; Tumors ; Vascular disorders of the skin</subject><ispartof>Hepatology (Baltimore, Md.), 2007-09, Vol.46 (3), p.740-748</ispartof><rights>Copyright © 2007 American Association for the Study of Liver Diseases</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</citedby><cites>FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.21743$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.21743$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19045964$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17663417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bioulac‐Sage, Paulette</creatorcontrib><creatorcontrib>Rebouissou, Sandra</creatorcontrib><creatorcontrib>Thomas, Cristel</creatorcontrib><creatorcontrib>Blanc, Jean‐Frédéric</creatorcontrib><creatorcontrib>Saric, Jean</creatorcontrib><creatorcontrib>Sa Cunha, Antonio</creatorcontrib><creatorcontrib>Rullier, Anne</creatorcontrib><creatorcontrib>Cubel, Gaëlle</creatorcontrib><creatorcontrib>Couchy, Gabrielle</creatorcontrib><creatorcontrib>Imbeaud, Sandrine</creatorcontrib><creatorcontrib>Balabaud, Charles</creatorcontrib><creatorcontrib>Zucman‐Rossi, Jessica</creatorcontrib><title>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P < 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P < 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.)</description><subject>Adenoma, Liver Cell - classification</subject><subject>Adenoma, Liver Cell - pathology</subject><subject>Adult</subject><subject>beta Catenin - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Dermatology</subject><subject>Fatty Acid-Binding Proteins - analysis</subject><subject>Fatty Acid-Binding Proteins - genetics</subject><subject>Fatty Acid-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Glucuronosyltransferase - analysis</subject><subject>Glucuronosyltransferase - genetics</subject><subject>Glucuronosyltransferase - metabolism</subject><subject>Glutamate-Ammonia Ligase - analysis</subject><subject>Glutamate-Ammonia Ligase - genetics</subject><subject>Glutamate-Ammonia Ligase - metabolism</subject><subject>Hepatocyte Nuclear Factor 1-alpha - analysis</subject><subject>Hepatocyte Nuclear Factor 1-alpha - genetics</subject><subject>Hepatocyte Nuclear Factor 1-alpha - metabolism</subject><subject>Humans</subject><subject>Immunohistochemistry - methods</subject><subject>Liver Neoplasms - classification</subject><subject>Liver Neoplasms - pathology</subject><subject>Liver. Biliary tract. Portal circulation. Exocrine pancreas</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Tumors</subject><subject>Vascular disorders of the skin</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LxDAQBuAgiq4fB_-A9KLgoZqkadIcZVFXWNCDXi3TdOpG-2XSIv33RrfgydPA8PAO8xJyyugVo5Rfb7C_4kyJZIcsWMpVnCQp3SULyhWNNUv0ATn0_p1SqgXP9skBU1ImgqkFeV1hD0NnsK7HGlwEJbZdA5Efi2HqMTI1eG8ra2CwXRuN3rZvUdPVaH55A-4DnY-gLSPbNGPbbawPcRtswnTTMdmroPZ4Ms8j8nJ3-7xcxevH-4flzTo2idRJnNESVJkWQmgtUllIVmEFSqZZZpQGI7TSnEnOlVAGRBk2aLThFUeVSVEkR-Rim9u77nNEP-Th_s9T0GI3-lxmXEspswAvt9C4znuHVd47G76YckbznzLzUGb-W2awZ3PoWDRY_sm5vQDOZwDeQF05aI31f05TkWopgrveui9b4_T_xXx1-7Q9_Q0PQY1E</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Bioulac‐Sage, Paulette</creator><creator>Rebouissou, Sandra</creator><creator>Thomas, Cristel</creator><creator>Blanc, Jean‐Frédéric</creator><creator>Saric, Jean</creator><creator>Sa Cunha, Antonio</creator><creator>Rullier, Anne</creator><creator>Cubel, Gaëlle</creator><creator>Couchy, Gabrielle</creator><creator>Imbeaud, Sandrine</creator><creator>Balabaud, Charles</creator><creator>Zucman‐Rossi, Jessica</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</title><author>Bioulac‐Sage, Paulette ; Rebouissou, Sandra ; Thomas, Cristel ; Blanc, Jean‐Frédéric ; Saric, Jean ; Sa Cunha, Antonio ; Rullier, Anne ; Cubel, Gaëlle ; Couchy, Gabrielle ; Imbeaud, Sandrine ; Balabaud, Charles ; Zucman‐Rossi, Jessica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3693-80da7d5b4499456b61fefa76588c79ac497921622747ca4dac4ec9c2f2e7864b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adenoma, Liver Cell - classification</topic><topic>Adenoma, Liver Cell - pathology</topic><topic>Adult</topic><topic>beta Catenin - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Dermatology</topic><topic>Fatty Acid-Binding Proteins - analysis</topic><topic>Fatty Acid-Binding Proteins - genetics</topic><topic>Fatty Acid-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Glucuronosyltransferase - analysis</topic><topic>Glucuronosyltransferase - genetics</topic><topic>Glucuronosyltransferase - metabolism</topic><topic>Glutamate-Ammonia Ligase - analysis</topic><topic>Glutamate-Ammonia Ligase - genetics</topic><topic>Glutamate-Ammonia Ligase - metabolism</topic><topic>Hepatocyte Nuclear Factor 1-alpha - analysis</topic><topic>Hepatocyte Nuclear Factor 1-alpha - genetics</topic><topic>Hepatocyte Nuclear Factor 1-alpha - metabolism</topic><topic>Humans</topic><topic>Immunohistochemistry - methods</topic><topic>Liver Neoplasms - classification</topic><topic>Liver Neoplasms - pathology</topic><topic>Liver. Biliary tract. Portal circulation. Exocrine pancreas</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Tumors</topic><topic>Vascular disorders of the skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bioulac‐Sage, Paulette</creatorcontrib><creatorcontrib>Rebouissou, Sandra</creatorcontrib><creatorcontrib>Thomas, Cristel</creatorcontrib><creatorcontrib>Blanc, Jean‐Frédéric</creatorcontrib><creatorcontrib>Saric, Jean</creatorcontrib><creatorcontrib>Sa Cunha, Antonio</creatorcontrib><creatorcontrib>Rullier, Anne</creatorcontrib><creatorcontrib>Cubel, Gaëlle</creatorcontrib><creatorcontrib>Couchy, Gabrielle</creatorcontrib><creatorcontrib>Imbeaud, Sandrine</creatorcontrib><creatorcontrib>Balabaud, Charles</creatorcontrib><creatorcontrib>Zucman‐Rossi, Jessica</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bioulac‐Sage, Paulette</au><au>Rebouissou, Sandra</au><au>Thomas, Cristel</au><au>Blanc, Jean‐Frédéric</au><au>Saric, Jean</au><au>Sa Cunha, Antonio</au><au>Rullier, Anne</au><au>Cubel, Gaëlle</au><au>Couchy, Gabrielle</au><au>Imbeaud, Sandrine</au><au>Balabaud, Charles</au><au>Zucman‐Rossi, Jessica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2007-09</date><risdate>2007</risdate><volume>46</volume><issue>3</issue><spage>740</spage><epage>748</epage><pages>740-748</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><coden>HPTLD9</coden><abstract>Hepatocellular adenomas (HCA) with activated β‐catenin present a high risk of malignant transformation. To permit robust routine diagnosis to allow for HCA subtype classification, we searched new useful markers. We analyzed the expression of candidate genes by quantitative reverse transcription polymerase chain reaction QRT‐PCR followed by immunohistochemistry to validate their specificity and sensitivity according to hepatocyte nuclear factor 1 alpha (HNF1α) and β‐catenin mutations as well as inflammatory phenotype. Quantitative RT‐PCR showed that FABP1 (liver fatty acid binding protein) and UGT2B7 were downregulated in HNF1α‐inactivated HCA (P ≤ 0.0002); GLUL (glutamine synthetase) and GPR49 overexpression were associated with β‐catenin–activating mutations (P ≤ 0.0005), and SAA2 (serum amyloid A2) and CRP (C‐reactive protein) were upregulated in inflammatory HCA (P = 0.0001). Immunohistochemistry validation confirmed that the absence of liver‐fatty acid binding protein (L‐FABP) expression rightly indicated HNF1α mutation (100% sensitivity and specificity), the combination of glutamine synthetase overexpression and nuclear β‐catenin staining were excellent predictors of β‐catenin–activating mutation (85% sensitivity, 100% specificity), and SAA hepatocytic staining was ideal to classify inflammatory HCA (91% sensitivity and specificity). Finally, a series of 93 HCA was unambiguously classified using our 4 validated immunohistochemical markers. Importantly, new associations were revealed for inflammatory HCA defined by SAA staining with frequent hemorrhages (P = 0.003), telangiectatic phenotype (P < 0.001), high body mass index, and alcohol intake (P ≤ 0.04). Previously described associations were confirmed and in particular the significant association between β‐catenin–activated HCA and hepatocellular carcinomas (HCC) at diagnosis or during follow‐up (P < 10−5). Conclusion: We refined HCA classification and its phenotypic correlations, providing a routine test to classify hepatocellular adenomas using simple and robust immunohistochemistry. (HEPATOLOGY 2007.)</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17663417</pmid><doi>10.1002/hep.21743</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2007-09, Vol.46 (3), p.740-748 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_proquest_miscellaneous_68296668 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adenoma, Liver Cell - classification Adenoma, Liver Cell - pathology Adult beta Catenin - metabolism Biological and medical sciences Biomarkers, Tumor - analysis Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Dermatology Fatty Acid-Binding Proteins - analysis Fatty Acid-Binding Proteins - genetics Fatty Acid-Binding Proteins - metabolism Female Gastroenterology. Liver. Pancreas. Abdomen Glucuronosyltransferase - analysis Glucuronosyltransferase - genetics Glucuronosyltransferase - metabolism Glutamate-Ammonia Ligase - analysis Glutamate-Ammonia Ligase - genetics Glutamate-Ammonia Ligase - metabolism Hepatocyte Nuclear Factor 1-alpha - analysis Hepatocyte Nuclear Factor 1-alpha - genetics Hepatocyte Nuclear Factor 1-alpha - metabolism Humans Immunohistochemistry - methods Liver Neoplasms - classification Liver Neoplasms - pathology Liver. Biliary tract. Portal circulation. Exocrine pancreas Male Medical sciences Tumors Vascular disorders of the skin |
title | Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T14%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatocellular%20adenoma%20subtype%20classification%20using%20molecular%20markers%20and%20immunohistochemistry&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Bioulac%E2%80%90Sage,%20Paulette&rft.date=2007-09&rft.volume=46&rft.issue=3&rft.spage=740&rft.epage=748&rft.pages=740-748&rft.issn=0270-9139&rft.eissn=1527-3350&rft.coden=HPTLD9&rft_id=info:doi/10.1002/hep.21743&rft_dat=%3Cproquest_cross%3E68296668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68296668&rft_id=info:pmid/17663417&rfr_iscdi=true |