Assimilation of NAD⁺ precursors in Candida glabrata
The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD⁺) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD⁺. C. glabrata salvage pathways defined in this article allow NAD⁺ to be synthesized from three compounds - nicotinic acid (NA),...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2007-10, Vol.66 (1), p.14-25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | Molecular microbiology |
container_volume | 66 |
creator | Ma, Biao Pan, Shih-Jung Zupancic, Margaret L Cormack, Brendan P |
description | The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD⁺) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD⁺. C. glabrata salvage pathways defined in this article allow NAD⁺ to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD⁺ via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD⁺ sources during disseminated infection. |
doi_str_mv | 10.1111/j.1365-2958.2007.05886.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68296401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68296401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4986-7f28362d2ab9dc7e2063dd760ea84ed7d2e87be91e406ed89ea4ba65e671d47c3</originalsourceid><addsrcrecordid>eNqNkc9u1DAQhy1U1C5LXwGiSuWWYDvxv0MPqy2FSi0coBI3axJPKq-yyWJv1PbIa_E4PEmd7opKPeGLLfn7zYw_E5IxWrC0Pq4KVkqRcyN0wSlVBRVay-L-FZn9uzggM2oEzUvNfx6RNzGuKGUlleUhOWJKcSGknBGxiNGvfQdbP_TZ0GZfF-d_f__JNgGbMcQhxMz32RJ65x1ktx3UAbbwlrxuoYt4vN_n5Obi04_ll_zq2-fL5eIqbyqjZa5arkvJHYfauEYhT92dU5Ii6Aqdchy1qtEwrKhEpw1CVYMUKBVzlWrKOfmwq7sJw68R49aufWyw66DHYYxWam5klZ41JycvwNUwhj7NZpmRglea8gTpHdSEIcaArd0Ev4bwYBm1k1e7spM-O-mzk1f75NXep-i7ff2xXqN7Du5FJuB0D0BsoGsD9I2Pz5yhWskn7mzH3fkOH_57AHt9fTmdUv79Lt_CYOE2pB433_n0sVRTybgpHwGBB5wN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196524802</pqid></control><display><type>article</type><title>Assimilation of NAD⁺ precursors in Candida glabrata</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Wiley Online Library Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Biao ; Pan, Shih-Jung ; Zupancic, Margaret L ; Cormack, Brendan P</creator><creatorcontrib>Ma, Biao ; Pan, Shih-Jung ; Zupancic, Margaret L ; Cormack, Brendan P</creatorcontrib><description>The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD⁺) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD⁺. C. glabrata salvage pathways defined in this article allow NAD⁺ to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD⁺ via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD⁺ sources during disseminated infection.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.2007.05886.x</identifier><identifier>PMID: 17725566</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Animals ; Biological and medical sciences ; Candida glabrata - genetics ; Candida glabrata - growth & development ; Candida glabrata - metabolism ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Fungal infections ; Gene Deletion ; Kinases ; Metabolic Networks and Pathways ; Mice ; Microbiology ; Miscellaneous ; Mycology ; N-Glycosyl Hydrolases - genetics ; N-Glycosyl Hydrolases - metabolism ; NAD - biosynthesis ; Niacin - metabolism ; Niacinamide - analogs & derivatives ; Niacinamide - metabolism ; Nicotinamidase - genetics ; Nicotinamidase - metabolism ; Pathogens ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><ispartof>Molecular microbiology, 2007-10, Vol.66 (1), p.14-25</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4986-7f28362d2ab9dc7e2063dd760ea84ed7d2e87be91e406ed89ea4ba65e671d47c3</citedby><cites>FETCH-LOGICAL-c4986-7f28362d2ab9dc7e2063dd760ea84ed7d2e87be91e406ed89ea4ba65e671d47c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.2007.05886.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.2007.05886.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19087666$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17725566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Biao</creatorcontrib><creatorcontrib>Pan, Shih-Jung</creatorcontrib><creatorcontrib>Zupancic, Margaret L</creatorcontrib><creatorcontrib>Cormack, Brendan P</creatorcontrib><title>Assimilation of NAD⁺ precursors in Candida glabrata</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD⁺) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD⁺. C. glabrata salvage pathways defined in this article allow NAD⁺ to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD⁺ via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD⁺ sources during disseminated infection.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Candida glabrata - genetics</subject><subject>Candida glabrata - growth & development</subject><subject>Candida glabrata - metabolism</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal infections</subject><subject>Gene Deletion</subject><subject>Kinases</subject><subject>Metabolic Networks and Pathways</subject><subject>Mice</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Mycology</subject><subject>N-Glycosyl Hydrolases - genetics</subject><subject>N-Glycosyl Hydrolases - metabolism</subject><subject>NAD - biosynthesis</subject><subject>Niacin - metabolism</subject><subject>Niacinamide - analogs & derivatives</subject><subject>Niacinamide - metabolism</subject><subject>Nicotinamidase - genetics</subject><subject>Nicotinamidase - metabolism</subject><subject>Pathogens</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQhy1U1C5LXwGiSuWWYDvxv0MPqy2FSi0coBI3axJPKq-yyWJv1PbIa_E4PEmd7opKPeGLLfn7zYw_E5IxWrC0Pq4KVkqRcyN0wSlVBRVay-L-FZn9uzggM2oEzUvNfx6RNzGuKGUlleUhOWJKcSGknBGxiNGvfQdbP_TZ0GZfF-d_f__JNgGbMcQhxMz32RJ65x1ktx3UAbbwlrxuoYt4vN_n5Obi04_ll_zq2-fL5eIqbyqjZa5arkvJHYfauEYhT92dU5Ii6Aqdchy1qtEwrKhEpw1CVYMUKBVzlWrKOfmwq7sJw68R49aufWyw66DHYYxWam5klZ41JycvwNUwhj7NZpmRglea8gTpHdSEIcaArd0Ev4bwYBm1k1e7spM-O-mzk1f75NXep-i7ff2xXqN7Du5FJuB0D0BsoGsD9I2Pz5yhWskn7mzH3fkOH_57AHt9fTmdUv79Lt_CYOE2pB433_n0sVRTybgpHwGBB5wN</recordid><startdate>200710</startdate><enddate>200710</enddate><creator>Ma, Biao</creator><creator>Pan, Shih-Jung</creator><creator>Zupancic, Margaret L</creator><creator>Cormack, Brendan P</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200710</creationdate><title>Assimilation of NAD⁺ precursors in Candida glabrata</title><author>Ma, Biao ; Pan, Shih-Jung ; Zupancic, Margaret L ; Cormack, Brendan P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4986-7f28362d2ab9dc7e2063dd760ea84ed7d2e87be91e406ed89ea4ba65e671d47c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Candida glabrata - genetics</topic><topic>Candida glabrata - growth & development</topic><topic>Candida glabrata - metabolism</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal infections</topic><topic>Gene Deletion</topic><topic>Kinases</topic><topic>Metabolic Networks and Pathways</topic><topic>Mice</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Mycology</topic><topic>N-Glycosyl Hydrolases - genetics</topic><topic>N-Glycosyl Hydrolases - metabolism</topic><topic>NAD - biosynthesis</topic><topic>Niacin - metabolism</topic><topic>Niacinamide - analogs & derivatives</topic><topic>Niacinamide - metabolism</topic><topic>Nicotinamidase - genetics</topic><topic>Nicotinamidase - metabolism</topic><topic>Pathogens</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Biao</creatorcontrib><creatorcontrib>Pan, Shih-Jung</creatorcontrib><creatorcontrib>Zupancic, Margaret L</creatorcontrib><creatorcontrib>Cormack, Brendan P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Biao</au><au>Pan, Shih-Jung</au><au>Zupancic, Margaret L</au><au>Cormack, Brendan P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assimilation of NAD⁺ precursors in Candida glabrata</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2007-10</date><risdate>2007</risdate><volume>66</volume><issue>1</issue><spage>14</spage><epage>25</epage><pages>14-25</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD⁺) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD⁺. C. glabrata salvage pathways defined in this article allow NAD⁺ to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD⁺ via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD⁺ sources during disseminated infection.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>17725566</pmid><doi>10.1111/j.1365-2958.2007.05886.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2007-10, Vol.66 (1), p.14-25 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_68296401 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Free E-Journal (出版社公開部分のみ); Wiley Online Library Free Content; Free Full-Text Journals in Chemistry |
subjects | Animals Biological and medical sciences Candida glabrata - genetics Candida glabrata - growth & development Candida glabrata - metabolism Enzymes Fundamental and applied biological sciences. Psychology Fungal infections Gene Deletion Kinases Metabolic Networks and Pathways Mice Microbiology Miscellaneous Mycology N-Glycosyl Hydrolases - genetics N-Glycosyl Hydrolases - metabolism NAD - biosynthesis Niacin - metabolism Niacinamide - analogs & derivatives Niacinamide - metabolism Nicotinamidase - genetics Nicotinamidase - metabolism Pathogens Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - metabolism |
title | Assimilation of NAD⁺ precursors in Candida glabrata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assimilation%20of%20NAD%E2%81%BA%20precursors%20in%20Candida%20glabrata&rft.jtitle=Molecular%20microbiology&rft.au=Ma,%20Biao&rft.date=2007-10&rft.volume=66&rft.issue=1&rft.spage=14&rft.epage=25&rft.pages=14-25&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.2007.05886.x&rft_dat=%3Cproquest_cross%3E68296401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196524802&rft_id=info:pmid/17725566&rfr_iscdi=true |