USING THE AMOVA FRAMEWORK TO ESTIMATE A STANDARDIZED GENETIC DIFFERENTIATION MEASURE

Comparison of population structure between studies can be difficult, because the value of the often-used FST-statistic depends on the amount of genetic variation within populations. Recently, a standardized measure of genetic differentiation was developed based on GST, which addressed this problem,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2006-11, Vol.60 (11), p.2399-2402
1. Verfasser: Meirmans, Patrick G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2402
container_issue 11
container_start_page 2399
container_title Evolution
container_volume 60
creator Meirmans, Patrick G
description Comparison of population structure between studies can be difficult, because the value of the often-used FST-statistic depends on the amount of genetic variation within populations. Recently, a standardized measure of genetic differentiation was developed based on GST, which addressed this problem, though no method was provided to estimate this standardized measure without bias. Here I present a method to estimate a standardized measure of population differentiation based on the analysis of molecular variance framework. One advantage of the method is that it can be readily expanded to include different hierarchical levels in the tested population structure.
doi_str_mv 10.1554/05-631.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68293642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4134847</jstor_id><sourcerecordid>4134847</sourcerecordid><originalsourceid>FETCH-LOGICAL-b372t-80f22574f676e2fd89ea2a49cf4e1bedba80bc62b88ff8b0fd7c454dc19efb603</originalsourceid><addsrcrecordid>eNqFkU9r20AQxZeS0LhuIR-ghKWH0ovS_a_VcbHXjmgsgbxuIZdFK-2CjW0lWvvQb18FmwQCJcxhGN6PmXk8AK4xusWcs5-IJ4LiW_wBjIZZJlwwcQFGCGGWUEnQFfgU4wYhlHGcfQRXOCVUMIpGwKyWeTGH5k5DtSh_Kzir1EL_Katf0JRQL02-UGbQ4NKoYqqqaf6gp3CuC23yCZzms5mudGFyZfKygAutlqtKfwaXod5G_-Xcx2A102Zyl9yX83yi7hNHU3JIJAqE8JQFkQpPQiszX5OaZU1gHjvfuloi1wjipAxBOhTatGGctQ3OfHAC0TH4ftr72HdPRx8PdreOjd9u673vjtEKSbLBJ3kXxBmnnPBn8NsbcNMd-_1gwhKSIk6zocbgxwlq-i7G3gf72K93df_XYmSf87CI2yEPiwf05rzv6Ha-fQXPAQzA1xOwiYeuf9EZpkyy9PVxt-66vf__oX8ePpHU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227053939</pqid></control><display><type>article</type><title>USING THE AMOVA FRAMEWORK TO ESTIMATE A STANDARDIZED GENETIC DIFFERENTIATION MEASURE</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>BioOne Complete</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Meirmans, Patrick G</creator><contributor>Goodnight, C</contributor><creatorcontrib>Meirmans, Patrick G ; Goodnight, C</creatorcontrib><description>Comparison of population structure between studies can be difficult, because the value of the often-used FST-statistic depends on the amount of genetic variation within populations. Recently, a standardized measure of genetic differentiation was developed based on GST, which addressed this problem, though no method was provided to estimate this standardized measure without bias. Here I present a method to estimate a standardized measure of population differentiation based on the analysis of molecular variance framework. One advantage of the method is that it can be readily expanded to include different hierarchical levels in the tested population structure.</description><identifier>ISSN: 0014-3820</identifier><identifier>EISSN: 1558-5646</identifier><identifier>DOI: 10.1554/05-631.1</identifier><identifier>PMID: 17236430</identifier><language>eng</language><publisher>United States: Society for the Study of Evolution</publisher><subject>Alleles ; Analysis of molecular variance ; Animal populations ; BRIEF COMMUNICATIONS ; Covariance ; Datasets ; Estimation methods ; F ST ; Gene Frequency ; Genetic diversity ; Genetic loci ; Genetic mutation ; Genetic Variation ; Genetics ; microsatellites ; Models, Genetic ; Molecular genetics ; mutation rate ; Population structure ; Statistical variance</subject><ispartof>Evolution, 2006-11, Vol.60 (11), p.2399-2402</ispartof><rights>The Society for the Study of Evolution</rights><rights>Copyright 2006 The Society for the Study of Evolution</rights><rights>Copyright Society for the Study of Evolution Nov 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b372t-80f22574f676e2fd89ea2a49cf4e1bedba80bc62b88ff8b0fd7c454dc19efb603</citedby><cites>FETCH-LOGICAL-b372t-80f22574f676e2fd89ea2a49cf4e1bedba80bc62b88ff8b0fd7c454dc19efb603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1554/05-631.1$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4134847$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,26980,27926,27927,52365,58019,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17236430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Goodnight, C</contributor><creatorcontrib>Meirmans, Patrick G</creatorcontrib><title>USING THE AMOVA FRAMEWORK TO ESTIMATE A STANDARDIZED GENETIC DIFFERENTIATION MEASURE</title><title>Evolution</title><addtitle>Evolution</addtitle><description>Comparison of population structure between studies can be difficult, because the value of the often-used FST-statistic depends on the amount of genetic variation within populations. Recently, a standardized measure of genetic differentiation was developed based on GST, which addressed this problem, though no method was provided to estimate this standardized measure without bias. Here I present a method to estimate a standardized measure of population differentiation based on the analysis of molecular variance framework. One advantage of the method is that it can be readily expanded to include different hierarchical levels in the tested population structure.</description><subject>Alleles</subject><subject>Analysis of molecular variance</subject><subject>Animal populations</subject><subject>BRIEF COMMUNICATIONS</subject><subject>Covariance</subject><subject>Datasets</subject><subject>Estimation methods</subject><subject>F ST</subject><subject>Gene Frequency</subject><subject>Genetic diversity</subject><subject>Genetic loci</subject><subject>Genetic mutation</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>microsatellites</subject><subject>Models, Genetic</subject><subject>Molecular genetics</subject><subject>mutation rate</subject><subject>Population structure</subject><subject>Statistical variance</subject><issn>0014-3820</issn><issn>1558-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9r20AQxZeS0LhuIR-ghKWH0ovS_a_VcbHXjmgsgbxuIZdFK-2CjW0lWvvQb18FmwQCJcxhGN6PmXk8AK4xusWcs5-IJ4LiW_wBjIZZJlwwcQFGCGGWUEnQFfgU4wYhlHGcfQRXOCVUMIpGwKyWeTGH5k5DtSh_Kzir1EL_Katf0JRQL02-UGbQ4NKoYqqqaf6gp3CuC23yCZzms5mudGFyZfKygAutlqtKfwaXod5G_-Xcx2A102Zyl9yX83yi7hNHU3JIJAqE8JQFkQpPQiszX5OaZU1gHjvfuloi1wjipAxBOhTatGGctQ3OfHAC0TH4ftr72HdPRx8PdreOjd9u673vjtEKSbLBJ3kXxBmnnPBn8NsbcNMd-_1gwhKSIk6zocbgxwlq-i7G3gf72K93df_XYmSf87CI2yEPiwf05rzv6Ha-fQXPAQzA1xOwiYeuf9EZpkyy9PVxt-66vf__oX8ePpHU</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Meirmans, Patrick G</creator><general>Society for the Study of Evolution</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200611</creationdate><title>USING THE AMOVA FRAMEWORK TO ESTIMATE A STANDARDIZED GENETIC DIFFERENTIATION MEASURE</title><author>Meirmans, Patrick G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b372t-80f22574f676e2fd89ea2a49cf4e1bedba80bc62b88ff8b0fd7c454dc19efb603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Alleles</topic><topic>Analysis of molecular variance</topic><topic>Animal populations</topic><topic>BRIEF COMMUNICATIONS</topic><topic>Covariance</topic><topic>Datasets</topic><topic>Estimation methods</topic><topic>F ST</topic><topic>Gene Frequency</topic><topic>Genetic diversity</topic><topic>Genetic loci</topic><topic>Genetic mutation</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>microsatellites</topic><topic>Models, Genetic</topic><topic>Molecular genetics</topic><topic>mutation rate</topic><topic>Population structure</topic><topic>Statistical variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meirmans, Patrick G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meirmans, Patrick G</au><au>Goodnight, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>USING THE AMOVA FRAMEWORK TO ESTIMATE A STANDARDIZED GENETIC DIFFERENTIATION MEASURE</atitle><jtitle>Evolution</jtitle><addtitle>Evolution</addtitle><date>2006-11</date><risdate>2006</risdate><volume>60</volume><issue>11</issue><spage>2399</spage><epage>2402</epage><pages>2399-2402</pages><issn>0014-3820</issn><eissn>1558-5646</eissn><abstract>Comparison of population structure between studies can be difficult, because the value of the often-used FST-statistic depends on the amount of genetic variation within populations. Recently, a standardized measure of genetic differentiation was developed based on GST, which addressed this problem, though no method was provided to estimate this standardized measure without bias. Here I present a method to estimate a standardized measure of population differentiation based on the analysis of molecular variance framework. One advantage of the method is that it can be readily expanded to include different hierarchical levels in the tested population structure.</abstract><cop>United States</cop><pub>Society for the Study of Evolution</pub><pmid>17236430</pmid><doi>10.1554/05-631.1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-3820
ispartof Evolution, 2006-11, Vol.60 (11), p.2399-2402
issn 0014-3820
1558-5646
language eng
recordid cdi_proquest_miscellaneous_68293642
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; BioOne Complete; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current)
subjects Alleles
Analysis of molecular variance
Animal populations
BRIEF COMMUNICATIONS
Covariance
Datasets
Estimation methods
F ST
Gene Frequency
Genetic diversity
Genetic loci
Genetic mutation
Genetic Variation
Genetics
microsatellites
Models, Genetic
Molecular genetics
mutation rate
Population structure
Statistical variance
title USING THE AMOVA FRAMEWORK TO ESTIMATE A STANDARDIZED GENETIC DIFFERENTIATION MEASURE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=USING%20THE%20AMOVA%20FRAMEWORK%20TO%20ESTIMATE%20A%20STANDARDIZED%20GENETIC%20DIFFERENTIATION%20MEASURE&rft.jtitle=Evolution&rft.au=Meirmans,%20Patrick%20G&rft.date=2006-11&rft.volume=60&rft.issue=11&rft.spage=2399&rft.epage=2402&rft.pages=2399-2402&rft.issn=0014-3820&rft.eissn=1558-5646&rft_id=info:doi/10.1554/05-631.1&rft_dat=%3Cjstor_proqu%3E4134847%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227053939&rft_id=info:pmid/17236430&rft_jstor_id=4134847&rfr_iscdi=true