Electroosmotic flow patterning using microfluidic delay loops
A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2006-12, Vol.6 (12), p.1525-1529 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1529 |
---|---|
container_issue | 12 |
container_start_page | 1525 |
container_title | Lab on a chip |
container_volume | 6 |
creator | Schönfeld, F Hardt, S Böhm, M Püschl, R J Walder, M Wenclawiak, B |
description | A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer. |
doi_str_mv | 10.1039/b609423f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68284769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68284769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMozjgK_gLpStxU85o2HwsXOsyoMOBG1yVN8qSSTmrSIvPvrcygm3ff4nC5HEIugd4CZequ4VSVBcMjModSsJyCVMd_vxIzcpbSJ6VQlVyekhmIgjKo-Jzcr7wzQwwhdWFoTYY-fGe9HgYXt-32IxvT7-1aEwP6sbUTYp3Xu8yH0KdzcoLaJ3dxyAV5X6_els_55vXpZfmwyQ2jMOQGwErnLDdCUINlBQ6d1gwtw0Yq3hihbQlC6IajKRALBcpwKNBJrICzBbne9_YxfI0uDXXXJuO811sXxlRzWchScDWBN3tw2ptSdFj3se103NVA619V9eNe1XpCrw6dY9M5-w8e3LAf-51k6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68284769</pqid></control><display><type>article</type><title>Electroosmotic flow patterning using microfluidic delay loops</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Schönfeld, F ; Hardt, S ; Böhm, M ; Püschl, R J ; Walder, M ; Wenclawiak, B</creator><creatorcontrib>Schönfeld, F ; Hardt, S ; Böhm, M ; Püschl, R J ; Walder, M ; Wenclawiak, B</creatorcontrib><description>A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b609423f</identifier><identifier>PMID: 17203156</identifier><language>eng</language><publisher>England</publisher><subject>Borates - chemistry ; Computer Simulation ; Electrochemistry ; Electrophoresis, Capillary - instrumentation ; Electrophoresis, Capillary - methods ; Equipment Design ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Osmosis ; Sensitivity and Specificity</subject><ispartof>Lab on a chip, 2006-12, Vol.6 (12), p.1525-1529</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</citedby><cites>FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17203156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönfeld, F</creatorcontrib><creatorcontrib>Hardt, S</creatorcontrib><creatorcontrib>Böhm, M</creatorcontrib><creatorcontrib>Püschl, R J</creatorcontrib><creatorcontrib>Walder, M</creatorcontrib><creatorcontrib>Wenclawiak, B</creatorcontrib><title>Electroosmotic flow patterning using microfluidic delay loops</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer.</description><subject>Borates - chemistry</subject><subject>Computer Simulation</subject><subject>Electrochemistry</subject><subject>Electrophoresis, Capillary - instrumentation</subject><subject>Electrophoresis, Capillary - methods</subject><subject>Equipment Design</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Osmosis</subject><subject>Sensitivity and Specificity</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAURYMozjgK_gLpStxU85o2HwsXOsyoMOBG1yVN8qSSTmrSIvPvrcygm3ff4nC5HEIugd4CZequ4VSVBcMjModSsJyCVMd_vxIzcpbSJ6VQlVyekhmIgjKo-Jzcr7wzQwwhdWFoTYY-fGe9HgYXt-32IxvT7-1aEwP6sbUTYp3Xu8yH0KdzcoLaJ3dxyAV5X6_els_55vXpZfmwyQ2jMOQGwErnLDdCUINlBQ6d1gwtw0Yq3hihbQlC6IajKRALBcpwKNBJrICzBbne9_YxfI0uDXXXJuO811sXxlRzWchScDWBN3tw2ptSdFj3se103NVA619V9eNe1XpCrw6dY9M5-w8e3LAf-51k6Q</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Schönfeld, F</creator><creator>Hardt, S</creator><creator>Böhm, M</creator><creator>Püschl, R J</creator><creator>Walder, M</creator><creator>Wenclawiak, B</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Electroosmotic flow patterning using microfluidic delay loops</title><author>Schönfeld, F ; Hardt, S ; Böhm, M ; Püschl, R J ; Walder, M ; Wenclawiak, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Borates - chemistry</topic><topic>Computer Simulation</topic><topic>Electrochemistry</topic><topic>Electrophoresis, Capillary - instrumentation</topic><topic>Electrophoresis, Capillary - methods</topic><topic>Equipment Design</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Osmosis</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönfeld, F</creatorcontrib><creatorcontrib>Hardt, S</creatorcontrib><creatorcontrib>Böhm, M</creatorcontrib><creatorcontrib>Püschl, R J</creatorcontrib><creatorcontrib>Walder, M</creatorcontrib><creatorcontrib>Wenclawiak, B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönfeld, F</au><au>Hardt, S</au><au>Böhm, M</au><au>Püschl, R J</au><au>Walder, M</au><au>Wenclawiak, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmotic flow patterning using microfluidic delay loops</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>6</volume><issue>12</issue><spage>1525</spage><epage>1529</epage><pages>1525-1529</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer.</abstract><cop>England</cop><pmid>17203156</pmid><doi>10.1039/b609423f</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2006-12, Vol.6 (12), p.1525-1529 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_68284769 |
source | Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Borates - chemistry Computer Simulation Electrochemistry Electrophoresis, Capillary - instrumentation Electrophoresis, Capillary - methods Equipment Design Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Osmosis Sensitivity and Specificity |
title | Electroosmotic flow patterning using microfluidic delay loops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmotic%20flow%20patterning%20using%20microfluidic%20delay%20loops&rft.jtitle=Lab%20on%20a%20chip&rft.au=Sch%C3%B6nfeld,%20F&rft.date=2006-12-01&rft.volume=6&rft.issue=12&rft.spage=1525&rft.epage=1529&rft.pages=1525-1529&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b609423f&rft_dat=%3Cproquest_cross%3E68284769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68284769&rft_id=info:pmid/17203156&rfr_iscdi=true |