Electroosmotic flow patterning using microfluidic delay loops

A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2006-12, Vol.6 (12), p.1525-1529
Hauptverfasser: Schönfeld, F, Hardt, S, Böhm, M, Püschl, R J, Walder, M, Wenclawiak, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1529
container_issue 12
container_start_page 1525
container_title Lab on a chip
container_volume 6
creator Schönfeld, F
Hardt, S
Böhm, M
Püschl, R J
Walder, M
Wenclawiak, B
description A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer.
doi_str_mv 10.1039/b609423f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68284769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68284769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</originalsourceid><addsrcrecordid>eNpFkE1LxDAURYMozjgK_gLpStxU85o2HwsXOsyoMOBG1yVN8qSSTmrSIvPvrcygm3ff4nC5HEIugd4CZequ4VSVBcMjModSsJyCVMd_vxIzcpbSJ6VQlVyekhmIgjKo-Jzcr7wzQwwhdWFoTYY-fGe9HgYXt-32IxvT7-1aEwP6sbUTYp3Xu8yH0KdzcoLaJ3dxyAV5X6_els_55vXpZfmwyQ2jMOQGwErnLDdCUINlBQ6d1gwtw0Yq3hihbQlC6IajKRALBcpwKNBJrICzBbne9_YxfI0uDXXXJuO811sXxlRzWchScDWBN3tw2ptSdFj3se103NVA619V9eNe1XpCrw6dY9M5-w8e3LAf-51k6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68284769</pqid></control><display><type>article</type><title>Electroosmotic flow patterning using microfluidic delay loops</title><source>Royal Society of Chemistry Journals Archive (1841-2007)</source><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Schönfeld, F ; Hardt, S ; Böhm, M ; Püschl, R J ; Walder, M ; Wenclawiak, B</creator><creatorcontrib>Schönfeld, F ; Hardt, S ; Böhm, M ; Püschl, R J ; Walder, M ; Wenclawiak, B</creatorcontrib><description>A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b609423f</identifier><identifier>PMID: 17203156</identifier><language>eng</language><publisher>England</publisher><subject>Borates - chemistry ; Computer Simulation ; Electrochemistry ; Electrophoresis, Capillary - instrumentation ; Electrophoresis, Capillary - methods ; Equipment Design ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Osmosis ; Sensitivity and Specificity</subject><ispartof>Lab on a chip, 2006-12, Vol.6 (12), p.1525-1529</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</citedby><cites>FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2818,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17203156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schönfeld, F</creatorcontrib><creatorcontrib>Hardt, S</creatorcontrib><creatorcontrib>Böhm, M</creatorcontrib><creatorcontrib>Püschl, R J</creatorcontrib><creatorcontrib>Walder, M</creatorcontrib><creatorcontrib>Wenclawiak, B</creatorcontrib><title>Electroosmotic flow patterning using microfluidic delay loops</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer.</description><subject>Borates - chemistry</subject><subject>Computer Simulation</subject><subject>Electrochemistry</subject><subject>Electrophoresis, Capillary - instrumentation</subject><subject>Electrophoresis, Capillary - methods</subject><subject>Equipment Design</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Osmosis</subject><subject>Sensitivity and Specificity</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1LxDAURYMozjgK_gLpStxU85o2HwsXOsyoMOBG1yVN8qSSTmrSIvPvrcygm3ff4nC5HEIugd4CZequ4VSVBcMjModSsJyCVMd_vxIzcpbSJ6VQlVyekhmIgjKo-Jzcr7wzQwwhdWFoTYY-fGe9HgYXt-32IxvT7-1aEwP6sbUTYp3Xu8yH0KdzcoLaJ3dxyAV5X6_els_55vXpZfmwyQ2jMOQGwErnLDdCUINlBQ6d1gwtw0Yq3hihbQlC6IajKRALBcpwKNBJrICzBbne9_YxfI0uDXXXJuO811sXxlRzWchScDWBN3tw2ptSdFj3se103NVA619V9eNe1XpCrw6dY9M5-w8e3LAf-51k6Q</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Schönfeld, F</creator><creator>Hardt, S</creator><creator>Böhm, M</creator><creator>Püschl, R J</creator><creator>Walder, M</creator><creator>Wenclawiak, B</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Electroosmotic flow patterning using microfluidic delay loops</title><author>Schönfeld, F ; Hardt, S ; Böhm, M ; Püschl, R J ; Walder, M ; Wenclawiak, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-c11d8eed6c770cf451efeaa3fd3fb896bc7ad4177ab6fc2ff2919c612fe8f5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Borates - chemistry</topic><topic>Computer Simulation</topic><topic>Electrochemistry</topic><topic>Electrophoresis, Capillary - instrumentation</topic><topic>Electrophoresis, Capillary - methods</topic><topic>Equipment Design</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Osmosis</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schönfeld, F</creatorcontrib><creatorcontrib>Hardt, S</creatorcontrib><creatorcontrib>Böhm, M</creatorcontrib><creatorcontrib>Püschl, R J</creatorcontrib><creatorcontrib>Walder, M</creatorcontrib><creatorcontrib>Wenclawiak, B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schönfeld, F</au><au>Hardt, S</au><au>Böhm, M</au><au>Püschl, R J</au><au>Walder, M</au><au>Wenclawiak, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmotic flow patterning using microfluidic delay loops</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>6</volume><issue>12</issue><spage>1525</spage><epage>1529</epage><pages>1525-1529</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>A theoretical and experimental investigation of alternating electroosmotic flow patterns by means of specially designed delay loops is presented. Using elementary methods of compact network modeling and detailed FEM simulations the flow behavior and, in particular, the rearrangement of sample plugs is modeled. The proposed designs rely on flow splitting in combination with electroosmotic delay loops leading to a runtime difference or phase shift between two sub-streams. Due to this phase shift, a new fluid interface is generated at the merging point. The approach is experimentally validated by injection of a Rhodamine 6G solution into an aqueous sodium tetraborate buffer.</abstract><cop>England</cop><pmid>17203156</pmid><doi>10.1039/b609423f</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2006-12, Vol.6 (12), p.1525-1529
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_68284769
source Royal Society of Chemistry Journals Archive (1841-2007); MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Borates - chemistry
Computer Simulation
Electrochemistry
Electrophoresis, Capillary - instrumentation
Electrophoresis, Capillary - methods
Equipment Design
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Osmosis
Sensitivity and Specificity
title Electroosmotic flow patterning using microfluidic delay loops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmotic%20flow%20patterning%20using%20microfluidic%20delay%20loops&rft.jtitle=Lab%20on%20a%20chip&rft.au=Sch%C3%B6nfeld,%20F&rft.date=2006-12-01&rft.volume=6&rft.issue=12&rft.spage=1525&rft.epage=1529&rft.pages=1525-1529&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b609423f&rft_dat=%3Cproquest_cross%3E68284769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68284769&rft_id=info:pmid/17203156&rfr_iscdi=true