Implementation and application of a versatile clustering tool for tandem mass spectrometry data

High-throughput proteomics experiments typically generate large amounts of peptide fragmentation mass spectra during a single experiment. There is often a substantial amount of redundant fragmentation of the same precursors among these spectra, which is usually considered a nuisance. We here discuss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteomics (Weinheim) 2007-09, Vol.7 (18), p.3245-3258
Hauptverfasser: Flikka, Kristian, Meukens, Jeroen, Helsens, Kenny, Vandekerckhove, Joël, Eidhammer, Ingvar, Gevaert, Kris, Martens, Lennart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3258
container_issue 18
container_start_page 3245
container_title Proteomics (Weinheim)
container_volume 7
creator Flikka, Kristian
Meukens, Jeroen
Helsens, Kenny
Vandekerckhove, Joël
Eidhammer, Ingvar
Gevaert, Kris
Martens, Lennart
description High-throughput proteomics experiments typically generate large amounts of peptide fragmentation mass spectra during a single experiment. There is often a substantial amount of redundant fragmentation of the same precursors among these spectra, which is usually considered a nuisance. We here discuss the potential of clustering and merging redundant spectra to turn this redundancy into a useful property of the dataset. To this end, we have created the first general-purpose, freely available open-source software application for clustering and merging MS/MS spectra. The application also introduces a novel approach to calculating the similarity of fragmentation mass spectra that takes into account the increased precision of modern mass spectrometers, and we suggest a simple but effective improvement to single-linkage clustering. The application and the novel algorithms are applied to several real-life proteomic datasets and the results are discussed. An analysis of the influence of the different algorithms available and their parameters is given, as well as a number of important applications of the overall approach.
doi_str_mv 10.1002/pmic.200700160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68283049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68283049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4350-a997e3948006063174b2289ed2a78214dc11673282161f7c95d1dc7282361a953</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhiNERT_gyhF8obdsx3bijyPa0mXVFpCgQuJiTR2nCiRxsL3A_nu8ymrLjdPMSM87M3qK4iWFBQVgF9PQ2QUDkABUwJPihApal1oJ-vTQ1_y4OI3xe0ak0vJZcUylBFVrflKY9TD1bnBjwtT5keDYEJymvrPz7FuC5JcLMY-9I7bfxORCNz6Q5H1PWh9Iyhk3kAFjJHFyNgU_uBS2pMGEz4ujFvvoXuzrWXF39e7L8n1583G1Xr69KW3FayhRa-m4rhSAAMGprO4ZU9o1DKVitGospUJylntBW2l13dDGyjxzQVHX_Kw4n_dOwf_cuJjM0EXr-h5H5zfRCMUUh0pncDGDNvgYg2vNFLoBw9ZQMDulZqfUHJTmwKv95s394JpHfO8wA2_2AEaLfRtwtF185DToutK7y3rmfmeT2_-cNZ9u18t_nyjnbJf1_zlkMfwwWYuszdcPK3N1udKX19-UYZl_PfMteoMPIf9z95kB5QAKlKgF_wsmt6eG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68283049</pqid></control><display><type>article</type><title>Implementation and application of a versatile clustering tool for tandem mass spectrometry data</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Flikka, Kristian ; Meukens, Jeroen ; Helsens, Kenny ; Vandekerckhove, Joël ; Eidhammer, Ingvar ; Gevaert, Kris ; Martens, Lennart</creator><creatorcontrib>Flikka, Kristian ; Meukens, Jeroen ; Helsens, Kenny ; Vandekerckhove, Joël ; Eidhammer, Ingvar ; Gevaert, Kris ; Martens, Lennart</creatorcontrib><description>High-throughput proteomics experiments typically generate large amounts of peptide fragmentation mass spectra during a single experiment. There is often a substantial amount of redundant fragmentation of the same precursors among these spectra, which is usually considered a nuisance. We here discuss the potential of clustering and merging redundant spectra to turn this redundancy into a useful property of the dataset. To this end, we have created the first general-purpose, freely available open-source software application for clustering and merging MS/MS spectra. The application also introduces a novel approach to calculating the similarity of fragmentation mass spectra that takes into account the increased precision of modern mass spectrometers, and we suggest a simple but effective improvement to single-linkage clustering. The application and the novel algorithms are applied to several real-life proteomic datasets and the results are discussed. An analysis of the influence of the different algorithms available and their parameters is given, as well as a number of important applications of the overall approach.</description><identifier>ISSN: 1615-9853</identifier><identifier>EISSN: 1615-9861</identifier><identifier>DOI: 10.1002/pmic.200700160</identifier><identifier>PMID: 17708593</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH Verlag</publisher><subject>Algorithms ; Amino Acid Sequence ; Analytical, structural and metabolic biochemistry ; Bioinformatics ; Biological and medical sciences ; Cell Line, Tumor ; Cluster Analysis ; Fundamental and applied biological sciences. Psychology ; Humans ; Mass spectrometry ; Miscellaneous ; Molecular Sequence Data ; Proteins ; Proteomics ; Spectrum clustering ; Tandem Mass Spectrometry - methods</subject><ispartof>Proteomics (Weinheim), 2007-09, Vol.7 (18), p.3245-3258</ispartof><rights>Copyright © 2007 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4350-a997e3948006063174b2289ed2a78214dc11673282161f7c95d1dc7282361a953</citedby><cites>FETCH-LOGICAL-c4350-a997e3948006063174b2289ed2a78214dc11673282161f7c95d1dc7282361a953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpmic.200700160$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpmic.200700160$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19095499$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17708593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Flikka, Kristian</creatorcontrib><creatorcontrib>Meukens, Jeroen</creatorcontrib><creatorcontrib>Helsens, Kenny</creatorcontrib><creatorcontrib>Vandekerckhove, Joël</creatorcontrib><creatorcontrib>Eidhammer, Ingvar</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Martens, Lennart</creatorcontrib><title>Implementation and application of a versatile clustering tool for tandem mass spectrometry data</title><title>Proteomics (Weinheim)</title><addtitle>Proteomics</addtitle><description>High-throughput proteomics experiments typically generate large amounts of peptide fragmentation mass spectra during a single experiment. There is often a substantial amount of redundant fragmentation of the same precursors among these spectra, which is usually considered a nuisance. We here discuss the potential of clustering and merging redundant spectra to turn this redundancy into a useful property of the dataset. To this end, we have created the first general-purpose, freely available open-source software application for clustering and merging MS/MS spectra. The application also introduces a novel approach to calculating the similarity of fragmentation mass spectra that takes into account the increased precision of modern mass spectrometers, and we suggest a simple but effective improvement to single-linkage clustering. The application and the novel algorithms are applied to several real-life proteomic datasets and the results are discussed. An analysis of the influence of the different algorithms available and their parameters is given, as well as a number of important applications of the overall approach.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Cluster Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Mass spectrometry</subject><subject>Miscellaneous</subject><subject>Molecular Sequence Data</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Spectrum clustering</subject><subject>Tandem Mass Spectrometry - methods</subject><issn>1615-9853</issn><issn>1615-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhiNERT_gyhF8obdsx3bijyPa0mXVFpCgQuJiTR2nCiRxsL3A_nu8ymrLjdPMSM87M3qK4iWFBQVgF9PQ2QUDkABUwJPihApal1oJ-vTQ1_y4OI3xe0ak0vJZcUylBFVrflKY9TD1bnBjwtT5keDYEJymvrPz7FuC5JcLMY-9I7bfxORCNz6Q5H1PWh9Iyhk3kAFjJHFyNgU_uBS2pMGEz4ujFvvoXuzrWXF39e7L8n1583G1Xr69KW3FayhRa-m4rhSAAMGprO4ZU9o1DKVitGospUJylntBW2l13dDGyjxzQVHX_Kw4n_dOwf_cuJjM0EXr-h5H5zfRCMUUh0pncDGDNvgYg2vNFLoBw9ZQMDulZqfUHJTmwKv95s394JpHfO8wA2_2AEaLfRtwtF185DToutK7y3rmfmeT2_-cNZ9u18t_nyjnbJf1_zlkMfwwWYuszdcPK3N1udKX19-UYZl_PfMteoMPIf9z95kB5QAKlKgF_wsmt6eG</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Flikka, Kristian</creator><creator>Meukens, Jeroen</creator><creator>Helsens, Kenny</creator><creator>Vandekerckhove, Joël</creator><creator>Eidhammer, Ingvar</creator><creator>Gevaert, Kris</creator><creator>Martens, Lennart</creator><general>Wiley-VCH Verlag</general><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Implementation and application of a versatile clustering tool for tandem mass spectrometry data</title><author>Flikka, Kristian ; Meukens, Jeroen ; Helsens, Kenny ; Vandekerckhove, Joël ; Eidhammer, Ingvar ; Gevaert, Kris ; Martens, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4350-a997e3948006063174b2289ed2a78214dc11673282161f7c95d1dc7282361a953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Cluster Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Mass spectrometry</topic><topic>Miscellaneous</topic><topic>Molecular Sequence Data</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Spectrum clustering</topic><topic>Tandem Mass Spectrometry - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flikka, Kristian</creatorcontrib><creatorcontrib>Meukens, Jeroen</creatorcontrib><creatorcontrib>Helsens, Kenny</creatorcontrib><creatorcontrib>Vandekerckhove, Joël</creatorcontrib><creatorcontrib>Eidhammer, Ingvar</creatorcontrib><creatorcontrib>Gevaert, Kris</creatorcontrib><creatorcontrib>Martens, Lennart</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Proteomics (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flikka, Kristian</au><au>Meukens, Jeroen</au><au>Helsens, Kenny</au><au>Vandekerckhove, Joël</au><au>Eidhammer, Ingvar</au><au>Gevaert, Kris</au><au>Martens, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation and application of a versatile clustering tool for tandem mass spectrometry data</atitle><jtitle>Proteomics (Weinheim)</jtitle><addtitle>Proteomics</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>7</volume><issue>18</issue><spage>3245</spage><epage>3258</epage><pages>3245-3258</pages><issn>1615-9853</issn><eissn>1615-9861</eissn><abstract>High-throughput proteomics experiments typically generate large amounts of peptide fragmentation mass spectra during a single experiment. There is often a substantial amount of redundant fragmentation of the same precursors among these spectra, which is usually considered a nuisance. We here discuss the potential of clustering and merging redundant spectra to turn this redundancy into a useful property of the dataset. To this end, we have created the first general-purpose, freely available open-source software application for clustering and merging MS/MS spectra. The application also introduces a novel approach to calculating the similarity of fragmentation mass spectra that takes into account the increased precision of modern mass spectrometers, and we suggest a simple but effective improvement to single-linkage clustering. The application and the novel algorithms are applied to several real-life proteomic datasets and the results are discussed. An analysis of the influence of the different algorithms available and their parameters is given, as well as a number of important applications of the overall approach.</abstract><cop>Weinheim</cop><pub>Wiley-VCH Verlag</pub><pmid>17708593</pmid><doi>10.1002/pmic.200700160</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-9853
ispartof Proteomics (Weinheim), 2007-09, Vol.7 (18), p.3245-3258
issn 1615-9853
1615-9861
language eng
recordid cdi_proquest_miscellaneous_68283049
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Amino Acid Sequence
Analytical, structural and metabolic biochemistry
Bioinformatics
Biological and medical sciences
Cell Line, Tumor
Cluster Analysis
Fundamental and applied biological sciences. Psychology
Humans
Mass spectrometry
Miscellaneous
Molecular Sequence Data
Proteins
Proteomics
Spectrum clustering
Tandem Mass Spectrometry - methods
title Implementation and application of a versatile clustering tool for tandem mass spectrometry data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20and%20application%20of%20a%20versatile%20clustering%20tool%20for%20tandem%20mass%20spectrometry%20data&rft.jtitle=Proteomics%20(Weinheim)&rft.au=Flikka,%20Kristian&rft.date=2007-09-01&rft.volume=7&rft.issue=18&rft.spage=3245&rft.epage=3258&rft.pages=3245-3258&rft.issn=1615-9853&rft.eissn=1615-9861&rft_id=info:doi/10.1002/pmic.200700160&rft_dat=%3Cproquest_cross%3E68283049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68283049&rft_id=info:pmid/17708593&rfr_iscdi=true