Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem

Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO₃⁺) and nitrite (NO₂⁺), to the gases nitric oxide (NO), nitrous oxide (N₂O), and dinitrogen (N₂), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 2006-12, Vol.16 (6), p.2091-2122
Hauptverfasser: Groffman, Peter M., Altabet, Mark A., Böhlke, J. K., Butterbach-Bahl, Klaus, David, Mark B., Firestone, Mary K., Giblin, Anne E., Kana, Todd M., Nielsen, Lars Peter, Voytek, Mary A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2122
container_issue 6
container_start_page 2091
container_title Ecological applications
container_volume 16
creator Groffman, Peter M.
Altabet, Mark A.
Böhlke, J. K.
Butterbach-Bahl, Klaus
David, Mark B.
Firestone, Mary K.
Giblin, Anne E.
Kana, Todd M.
Nielsen, Lars Peter
Voytek, Mary A.
description Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO₃⁺) and nitrite (NO₂⁺), to the gases nitric oxide (NO), nitrous oxide (N₂O), and dinitrogen (N₂), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) ₁₅N tracers, (3) direct N₂ quantification, (4) N₂:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.
doi_str_mv 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68282741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40061945</jstor_id><sourcerecordid>40061945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6121-4eed9e5536698211b386d8e4dbe5ac1c3239505ff8f582a378e1400c74aa6ab93</originalsourceid><addsrcrecordid>eNqdkU9v1DAQxSMEon_gI4ByQuWQxTOJHbs9rXbbUqmrXQk4IWQ5yYS6yq63dkLVb4-jLHBEqi9jjX9-Y7-XJJ-AzUAqFiuHjJUCzpAx8ZGB-I5MwfnqarVczn_gjM0W6wt8kRyDylXGucSXcf_n1lFyEsI9iwsRXydHUCLjUsFxsllRf-eakLbOpysyYfB29zNd0s723ra2Nr11u_N0aX-RD5TO93vvTH1HIe1damK_jdDQ9enGu6qj7ZvkVWu6QG8P9TT5dnX5dfE5u11f3yzmt1ktACEriBpFnOdCKIkAVS5FI6loKuKmhjrHXHHG21a28S8mLyVBwVhdFsYIU6n8NPkw6cb3PAwUer21oaauMztyQ9BCosSygP-CoDgWHFkEryew9i4ET63ee7s1_kkD02MKevRTj37qMQUdU9BjCnpKQaNmerHWGJXeH0YO1ZaafzoH2yPwZQIebUdPz52jL-ebEQAhxuOo-m5SvQ-9839VixFRBc9_A9RApjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19524520</pqid></control><display><type>article</type><title>Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Groffman, Peter M. ; Altabet, Mark A. ; Böhlke, J. K. ; Butterbach-Bahl, Klaus ; David, Mark B. ; Firestone, Mary K. ; Giblin, Anne E. ; Kana, Todd M. ; Nielsen, Lars Peter ; Voytek, Mary A.</creator><creatorcontrib>Groffman, Peter M. ; Altabet, Mark A. ; Böhlke, J. K. ; Butterbach-Bahl, Klaus ; David, Mark B. ; Firestone, Mary K. ; Giblin, Anne E. ; Kana, Todd M. ; Nielsen, Lars Peter ; Voytek, Mary A.</creatorcontrib><description>Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO₃⁺) and nitrite (NO₂⁺), to the gases nitric oxide (NO), nitrous oxide (N₂O), and dinitrogen (N₂), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) ₁₅N tracers, (3) direct N₂ quantification, (4) N₂:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2</identifier><identifier>PMID: 17205891</identifier><language>eng</language><publisher>United States: Ecological Society of America</publisher><subject>Acetylene ; Argon ; denitrification ; greenhouse effect ; Groundwater ; Invited Feature: Denitrification across Landscapes and Waterscapes ; Isotopes ; Mass balance ; nitrate ; Nitrates ; Nitrates - metabolism ; nitric oxide ; Nitrites - metabolism ; Nitrogen ; Nitrogen - analysis ; Nitrogen - metabolism ; Nitrogen Isotopes ; Nitrogen Oxides - metabolism ; Nitrous oxide ; Sea water ; Sedimentary soils ; Sediments ; Soil - analysis ; Soil water ; stable isotopes ; Water - analysis ; water quality</subject><ispartof>Ecological applications, 2006-12, Vol.16 (6), p.2091-2122</ispartof><rights>Copyright 2006 Ecological Society of America</rights><rights>2006 by the Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6121-4eed9e5536698211b386d8e4dbe5ac1c3239505ff8f582a378e1400c74aa6ab93</citedby><cites>FETCH-LOGICAL-c6121-4eed9e5536698211b386d8e4dbe5ac1c3239505ff8f582a378e1400c74aa6ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40061945$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40061945$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17205891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Groffman, Peter M.</creatorcontrib><creatorcontrib>Altabet, Mark A.</creatorcontrib><creatorcontrib>Böhlke, J. K.</creatorcontrib><creatorcontrib>Butterbach-Bahl, Klaus</creatorcontrib><creatorcontrib>David, Mark B.</creatorcontrib><creatorcontrib>Firestone, Mary K.</creatorcontrib><creatorcontrib>Giblin, Anne E.</creatorcontrib><creatorcontrib>Kana, Todd M.</creatorcontrib><creatorcontrib>Nielsen, Lars Peter</creatorcontrib><creatorcontrib>Voytek, Mary A.</creatorcontrib><title>Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO₃⁺) and nitrite (NO₂⁺), to the gases nitric oxide (NO), nitrous oxide (N₂O), and dinitrogen (N₂), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) ₁₅N tracers, (3) direct N₂ quantification, (4) N₂:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.</description><subject>Acetylene</subject><subject>Argon</subject><subject>denitrification</subject><subject>greenhouse effect</subject><subject>Groundwater</subject><subject>Invited Feature: Denitrification across Landscapes and Waterscapes</subject><subject>Isotopes</subject><subject>Mass balance</subject><subject>nitrate</subject><subject>Nitrates</subject><subject>Nitrates - metabolism</subject><subject>nitric oxide</subject><subject>Nitrites - metabolism</subject><subject>Nitrogen</subject><subject>Nitrogen - analysis</subject><subject>Nitrogen - metabolism</subject><subject>Nitrogen Isotopes</subject><subject>Nitrogen Oxides - metabolism</subject><subject>Nitrous oxide</subject><subject>Sea water</subject><subject>Sedimentary soils</subject><subject>Sediments</subject><subject>Soil - analysis</subject><subject>Soil water</subject><subject>stable isotopes</subject><subject>Water - analysis</subject><subject>water quality</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqdkU9v1DAQxSMEon_gI4ByQuWQxTOJHbs9rXbbUqmrXQk4IWQ5yYS6yq63dkLVb4-jLHBEqi9jjX9-Y7-XJJ-AzUAqFiuHjJUCzpAx8ZGB-I5MwfnqarVczn_gjM0W6wt8kRyDylXGucSXcf_n1lFyEsI9iwsRXydHUCLjUsFxsllRf-eakLbOpysyYfB29zNd0s723ra2Nr11u_N0aX-RD5TO93vvTH1HIe1damK_jdDQ9enGu6qj7ZvkVWu6QG8P9TT5dnX5dfE5u11f3yzmt1ktACEriBpFnOdCKIkAVS5FI6loKuKmhjrHXHHG21a28S8mLyVBwVhdFsYIU6n8NPkw6cb3PAwUer21oaauMztyQ9BCosSygP-CoDgWHFkEryew9i4ET63ee7s1_kkD02MKevRTj37qMQUdU9BjCnpKQaNmerHWGJXeH0YO1ZaafzoH2yPwZQIebUdPz52jL-ebEQAhxuOo-m5SvQ-9839VixFRBc9_A9RApjY</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Groffman, Peter M.</creator><creator>Altabet, Mark A.</creator><creator>Böhlke, J. K.</creator><creator>Butterbach-Bahl, Klaus</creator><creator>David, Mark B.</creator><creator>Firestone, Mary K.</creator><creator>Giblin, Anne E.</creator><creator>Kana, Todd M.</creator><creator>Nielsen, Lars Peter</creator><creator>Voytek, Mary A.</creator><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem</title><author>Groffman, Peter M. ; Altabet, Mark A. ; Böhlke, J. K. ; Butterbach-Bahl, Klaus ; David, Mark B. ; Firestone, Mary K. ; Giblin, Anne E. ; Kana, Todd M. ; Nielsen, Lars Peter ; Voytek, Mary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6121-4eed9e5536698211b386d8e4dbe5ac1c3239505ff8f582a378e1400c74aa6ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acetylene</topic><topic>Argon</topic><topic>denitrification</topic><topic>greenhouse effect</topic><topic>Groundwater</topic><topic>Invited Feature: Denitrification across Landscapes and Waterscapes</topic><topic>Isotopes</topic><topic>Mass balance</topic><topic>nitrate</topic><topic>Nitrates</topic><topic>Nitrates - metabolism</topic><topic>nitric oxide</topic><topic>Nitrites - metabolism</topic><topic>Nitrogen</topic><topic>Nitrogen - analysis</topic><topic>Nitrogen - metabolism</topic><topic>Nitrogen Isotopes</topic><topic>Nitrogen Oxides - metabolism</topic><topic>Nitrous oxide</topic><topic>Sea water</topic><topic>Sedimentary soils</topic><topic>Sediments</topic><topic>Soil - analysis</topic><topic>Soil water</topic><topic>stable isotopes</topic><topic>Water - analysis</topic><topic>water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groffman, Peter M.</creatorcontrib><creatorcontrib>Altabet, Mark A.</creatorcontrib><creatorcontrib>Böhlke, J. K.</creatorcontrib><creatorcontrib>Butterbach-Bahl, Klaus</creatorcontrib><creatorcontrib>David, Mark B.</creatorcontrib><creatorcontrib>Firestone, Mary K.</creatorcontrib><creatorcontrib>Giblin, Anne E.</creatorcontrib><creatorcontrib>Kana, Todd M.</creatorcontrib><creatorcontrib>Nielsen, Lars Peter</creatorcontrib><creatorcontrib>Voytek, Mary A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groffman, Peter M.</au><au>Altabet, Mark A.</au><au>Böhlke, J. K.</au><au>Butterbach-Bahl, Klaus</au><au>David, Mark B.</au><au>Firestone, Mary K.</au><au>Giblin, Anne E.</au><au>Kana, Todd M.</au><au>Nielsen, Lars Peter</au><au>Voytek, Mary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>16</volume><issue>6</issue><spage>2091</spage><epage>2122</epage><pages>2091-2122</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO₃⁺) and nitrite (NO₂⁺), to the gases nitric oxide (NO), nitrous oxide (N₂O), and dinitrogen (N₂), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very difficult to measure, and existing methods are problematic for different reasons in different places at different times. In this paper, we review the major approaches that have been taken to measure denitrification in terrestrial and aquatic environments and discuss the strengths, weaknesses, and future prospects for the different methods. Methodological approaches covered include (1) acetylene-based methods, (2) ₁₅N tracers, (3) direct N₂ quantification, (4) N₂:Ar ratio quantification, (5) mass balance approaches, (6) stoichiometric approaches, (7) methods based on stable isotopes, (8) in situ gradients with atmospheric environmental tracers, and (9) molecular approaches. Our review makes it clear that the prospects for improved quantification of denitrification vary greatly in different environments and at different scales. While current methodology allows for the production of accurate estimates of denitrification at scales relevant to water and air quality and ecosystem fertility questions in some systems (e.g., aquatic sediments, well-defined aquifers), methodology for other systems, especially upland terrestrial areas, still needs development. Comparison of mass balance and stoichiometric approaches that constrain estimates of denitrification at large scales with point measurements (made using multiple methods), in multiple systems, is likely to propel more improvement in denitrification methods over the next few years.</abstract><cop>United States</cop><pub>Ecological Society of America</pub><pmid>17205891</pmid><doi>10.1890/1051-0761(2006)016[2091:MFMDDA]2.0.CO;2</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-0761
ispartof Ecological applications, 2006-12, Vol.16 (6), p.2091-2122
issn 1051-0761
1939-5582
language eng
recordid cdi_proquest_miscellaneous_68282741
source Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acetylene
Argon
denitrification
greenhouse effect
Groundwater
Invited Feature: Denitrification across Landscapes and Waterscapes
Isotopes
Mass balance
nitrate
Nitrates
Nitrates - metabolism
nitric oxide
Nitrites - metabolism
Nitrogen
Nitrogen - analysis
Nitrogen - metabolism
Nitrogen Isotopes
Nitrogen Oxides - metabolism
Nitrous oxide
Sea water
Sedimentary soils
Sediments
Soil - analysis
Soil water
stable isotopes
Water - analysis
water quality
title Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20Measuring%20Denitrification:%20Diverse%20Approaches%20to%20a%20Difficult%20Problem&rft.jtitle=Ecological%20applications&rft.au=Groffman,%20Peter%20M.&rft.date=2006-12-01&rft.volume=16&rft.issue=6&rft.spage=2091&rft.epage=2122&rft.pages=2091-2122&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.1890/1051-0761(2006)016%5B2091:MFMDDA%5D2.0.CO;2&rft_dat=%3Cjstor_proqu%3E40061945%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19524520&rft_id=info:pmid/17205891&rft_jstor_id=40061945&rfr_iscdi=true