Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization

Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2007-10, Vol.1167 (1), p.42-53
Hauptverfasser: Tarafder, Abhijit, Aumann, Lars, Müller-Späth, Thomas, Morbidelli, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 42
container_title Journal of Chromatography A
container_volume 1167
creator Tarafder, Abhijit
Aumann, Lars
Müller-Späth, Thomas
Morbidelli, Massimo
description Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations.
doi_str_mv 10.1016/j.chroma.2007.07.086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68277197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967307013180</els_id><sourcerecordid>68277197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhnVoSbZJ36AUX9rTeivZK8m-FMrSJgsLvSRnMZbGiRbL8kr2QvL0leuF3AID0sD3DzMfIV8Y3TDKxI_jRj8H72BTUCo3c1XiA1lRWrC8FrK8Jp9iPFLKJJXFFblmUgpecLoip70bgj-jw37MfJtBn6UudB4MmnXmpm60ufZu8H0i1ln03XlGnwIYO38a6yMOEGC0vs_GtMb09LzkfHNEPdozZn4YrbOv_5lb8rGFLuLny3tDHv_8ftjd54e_d_vdr0Out1yMeS1rME0rCzQlhwK02QLHhjHe1ELUlBrGdDqQUxAlZ8xAgY0Bs604Ul1W5Q35vsxN950mjKNyNmrsOujRT1GJqpCS1TKB2wXUwccYsFVDsA7Ci2JUzXrVUS161axXzVWJFPt6mT81Ds1b6OI2Ad8uAEQNXRug1za-cTUVvCrLxP1cOEw2zhaDijqp1WhsSP6U8fb9Tf4BUvWgHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68277197</pqid></control><display><type>article</type><title>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Tarafder, Abhijit ; Aumann, Lars ; Müller-Späth, Thomas ; Morbidelli, Massimo</creator><creatorcontrib>Tarafder, Abhijit ; Aumann, Lars ; Müller-Späth, Thomas ; Morbidelli, Massimo</creatorcontrib><description>Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations.</description><identifier>ISSN: 0021-9673</identifier><identifier>DOI: 10.1016/j.chroma.2007.07.086</identifier><identifier>PMID: 17765250</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Algorithms ; Aminoacids, peptides. Hormones. Neuropeptides ; Analytical chemistry ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Calcitonin - chemistry ; Calibration ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Chromatography, High Pressure Liquid - methods ; Chromatography, Ion Exchange - methods ; Chromatography, Liquid - methods ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hydrophobic and Hydrophilic Interactions ; Models, Theoretical ; Multiobjective ; Nonlinear Dynamics ; Optimization ; Other chromatographic methods ; Proteins ; Solvent-gradient ; Solvents - analysis ; Solvents - chemistry ; Solvents - classification ; Spectrophotometry, Ultraviolet ; Thermodynamics</subject><ispartof>Journal of Chromatography A, 2007-10, Vol.1167 (1), p.42-53</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</citedby><cites>FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967307013180$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19065833$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17765250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarafder, Abhijit</creatorcontrib><creatorcontrib>Aumann, Lars</creatorcontrib><creatorcontrib>Müller-Späth, Thomas</creatorcontrib><creatorcontrib>Morbidelli, Massimo</creatorcontrib><title>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations.</description><subject>Adsorption</subject><subject>Algorithms</subject><subject>Aminoacids, peptides. Hormones. Neuropeptides</subject><subject>Analytical chemistry</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Calcitonin - chemistry</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Chromatography, Ion Exchange - methods</subject><subject>Chromatography, Liquid - methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Theoretical</subject><subject>Multiobjective</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Other chromatographic methods</subject><subject>Proteins</subject><subject>Solvent-gradient</subject><subject>Solvents - analysis</subject><subject>Solvents - chemistry</subject><subject>Solvents - classification</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Thermodynamics</subject><issn>0021-9673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFq3DAQhnVoSbZJ36AUX9rTeivZK8m-FMrSJgsLvSRnMZbGiRbL8kr2QvL0leuF3AID0sD3DzMfIV8Y3TDKxI_jRj8H72BTUCo3c1XiA1lRWrC8FrK8Jp9iPFLKJJXFFblmUgpecLoip70bgj-jw37MfJtBn6UudB4MmnXmpm60ufZu8H0i1ln03XlGnwIYO38a6yMOEGC0vs_GtMb09LzkfHNEPdozZn4YrbOv_5lb8rGFLuLny3tDHv_8ftjd54e_d_vdr0Out1yMeS1rME0rCzQlhwK02QLHhjHe1ELUlBrGdDqQUxAlZ8xAgY0Bs604Ul1W5Q35vsxN950mjKNyNmrsOujRT1GJqpCS1TKB2wXUwccYsFVDsA7Ci2JUzXrVUS161axXzVWJFPt6mT81Ds1b6OI2Ad8uAEQNXRug1za-cTUVvCrLxP1cOEw2zhaDijqp1WhsSP6U8fb9Tf4BUvWgHQ</recordid><startdate>20071005</startdate><enddate>20071005</enddate><creator>Tarafder, Abhijit</creator><creator>Aumann, Lars</creator><creator>Müller-Späth, Thomas</creator><creator>Morbidelli, Massimo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071005</creationdate><title>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</title><author>Tarafder, Abhijit ; Aumann, Lars ; Müller-Späth, Thomas ; Morbidelli, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adsorption</topic><topic>Algorithms</topic><topic>Aminoacids, peptides. Hormones. Neuropeptides</topic><topic>Analytical chemistry</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Calcitonin - chemistry</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Chromatography, Ion Exchange - methods</topic><topic>Chromatography, Liquid - methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Theoretical</topic><topic>Multiobjective</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Other chromatographic methods</topic><topic>Proteins</topic><topic>Solvent-gradient</topic><topic>Solvents - analysis</topic><topic>Solvents - chemistry</topic><topic>Solvents - classification</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarafder, Abhijit</creatorcontrib><creatorcontrib>Aumann, Lars</creatorcontrib><creatorcontrib>Müller-Späth, Thomas</creatorcontrib><creatorcontrib>Morbidelli, Massimo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarafder, Abhijit</au><au>Aumann, Lars</au><au>Müller-Späth, Thomas</au><au>Morbidelli, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2007-10-05</date><risdate>2007</risdate><volume>1167</volume><issue>1</issue><spage>42</spage><epage>53</epage><pages>42-53</pages><issn>0021-9673</issn><coden>JOCRAM</coden><abstract>Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17765250</pmid><doi>10.1016/j.chroma.2007.07.086</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 2007-10, Vol.1167 (1), p.42-53
issn 0021-9673
language eng
recordid cdi_proquest_miscellaneous_68277197
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adsorption
Algorithms
Aminoacids, peptides. Hormones. Neuropeptides
Analytical chemistry
Analytical, structural and metabolic biochemistry
Biological and medical sciences
Calcitonin - chemistry
Calibration
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography
Chromatography, High Pressure Liquid - methods
Chromatography, Ion Exchange - methods
Chromatography, Liquid - methods
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Hydrophobic and Hydrophilic Interactions
Models, Theoretical
Multiobjective
Nonlinear Dynamics
Optimization
Other chromatographic methods
Proteins
Solvent-gradient
Solvents - analysis
Solvents - chemistry
Solvents - classification
Spectrophotometry, Ultraviolet
Thermodynamics
title Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20an%20overloaded,%20multi-component,%20solvent%20gradient%20bioseparation%20through%20multiobjective%20optimization&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Tarafder,%20Abhijit&rft.date=2007-10-05&rft.volume=1167&rft.issue=1&rft.spage=42&rft.epage=53&rft.pages=42-53&rft.issn=0021-9673&rft.coden=JOCRAM&rft_id=info:doi/10.1016/j.chroma.2007.07.086&rft_dat=%3Cproquest_cross%3E68277197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68277197&rft_id=info:pmid/17765250&rft_els_id=S0021967307013180&rfr_iscdi=true