Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization
Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improv...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2007-10, Vol.1167 (1), p.42-53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | Journal of Chromatography A |
container_volume | 1167 |
creator | Tarafder, Abhijit Aumann, Lars Müller-Späth, Thomas Morbidelli, Massimo |
description | Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations. |
doi_str_mv | 10.1016/j.chroma.2007.07.086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68277197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967307013180</els_id><sourcerecordid>68277197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</originalsourceid><addsrcrecordid>eNp9kMFq3DAQhnVoSbZJ36AUX9rTeivZK8m-FMrSJgsLvSRnMZbGiRbL8kr2QvL0leuF3AID0sD3DzMfIV8Y3TDKxI_jRj8H72BTUCo3c1XiA1lRWrC8FrK8Jp9iPFLKJJXFFblmUgpecLoip70bgj-jw37MfJtBn6UudB4MmnXmpm60ufZu8H0i1ln03XlGnwIYO38a6yMOEGC0vs_GtMb09LzkfHNEPdozZn4YrbOv_5lb8rGFLuLny3tDHv_8ftjd54e_d_vdr0Out1yMeS1rME0rCzQlhwK02QLHhjHe1ELUlBrGdDqQUxAlZ8xAgY0Bs604Ul1W5Q35vsxN950mjKNyNmrsOujRT1GJqpCS1TKB2wXUwccYsFVDsA7Ci2JUzXrVUS161axXzVWJFPt6mT81Ds1b6OI2Ad8uAEQNXRug1za-cTUVvCrLxP1cOEw2zhaDijqp1WhsSP6U8fb9Tf4BUvWgHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68277197</pqid></control><display><type>article</type><title>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Tarafder, Abhijit ; Aumann, Lars ; Müller-Späth, Thomas ; Morbidelli, Massimo</creator><creatorcontrib>Tarafder, Abhijit ; Aumann, Lars ; Müller-Späth, Thomas ; Morbidelli, Massimo</creatorcontrib><description>Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations.</description><identifier>ISSN: 0021-9673</identifier><identifier>DOI: 10.1016/j.chroma.2007.07.086</identifier><identifier>PMID: 17765250</identifier><identifier>CODEN: JOCRAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorption ; Algorithms ; Aminoacids, peptides. Hormones. Neuropeptides ; Analytical chemistry ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Calcitonin - chemistry ; Calibration ; Chemistry ; Chromatographic methods and physical methods associated with chromatography ; Chromatography ; Chromatography, High Pressure Liquid - methods ; Chromatography, Ion Exchange - methods ; Chromatography, Liquid - methods ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hydrophobic and Hydrophilic Interactions ; Models, Theoretical ; Multiobjective ; Nonlinear Dynamics ; Optimization ; Other chromatographic methods ; Proteins ; Solvent-gradient ; Solvents - analysis ; Solvents - chemistry ; Solvents - classification ; Spectrophotometry, Ultraviolet ; Thermodynamics</subject><ispartof>Journal of Chromatography A, 2007-10, Vol.1167 (1), p.42-53</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</citedby><cites>FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967307013180$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19065833$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17765250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tarafder, Abhijit</creatorcontrib><creatorcontrib>Aumann, Lars</creatorcontrib><creatorcontrib>Müller-Späth, Thomas</creatorcontrib><creatorcontrib>Morbidelli, Massimo</creatorcontrib><title>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations.</description><subject>Adsorption</subject><subject>Algorithms</subject><subject>Aminoacids, peptides. Hormones. Neuropeptides</subject><subject>Analytical chemistry</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Calcitonin - chemistry</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Chromatographic methods and physical methods associated with chromatography</subject><subject>Chromatography</subject><subject>Chromatography, High Pressure Liquid - methods</subject><subject>Chromatography, Ion Exchange - methods</subject><subject>Chromatography, Liquid - methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Theoretical</subject><subject>Multiobjective</subject><subject>Nonlinear Dynamics</subject><subject>Optimization</subject><subject>Other chromatographic methods</subject><subject>Proteins</subject><subject>Solvent-gradient</subject><subject>Solvents - analysis</subject><subject>Solvents - chemistry</subject><subject>Solvents - classification</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>Thermodynamics</subject><issn>0021-9673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFq3DAQhnVoSbZJ36AUX9rTeivZK8m-FMrSJgsLvSRnMZbGiRbL8kr2QvL0leuF3AID0sD3DzMfIV8Y3TDKxI_jRj8H72BTUCo3c1XiA1lRWrC8FrK8Jp9iPFLKJJXFFblmUgpecLoip70bgj-jw37MfJtBn6UudB4MmnXmpm60ufZu8H0i1ln03XlGnwIYO38a6yMOEGC0vs_GtMb09LzkfHNEPdozZn4YrbOv_5lb8rGFLuLny3tDHv_8ftjd54e_d_vdr0Out1yMeS1rME0rCzQlhwK02QLHhjHe1ELUlBrGdDqQUxAlZ8xAgY0Bs604Ul1W5Q35vsxN950mjKNyNmrsOujRT1GJqpCS1TKB2wXUwccYsFVDsA7Ci2JUzXrVUS161axXzVWJFPt6mT81Ds1b6OI2Ad8uAEQNXRug1za-cTUVvCrLxP1cOEw2zhaDijqp1WhsSP6U8fb9Tf4BUvWgHQ</recordid><startdate>20071005</startdate><enddate>20071005</enddate><creator>Tarafder, Abhijit</creator><creator>Aumann, Lars</creator><creator>Müller-Späth, Thomas</creator><creator>Morbidelli, Massimo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071005</creationdate><title>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</title><author>Tarafder, Abhijit ; Aumann, Lars ; Müller-Späth, Thomas ; Morbidelli, Massimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-979adbf72ed35a2acd4a5eb115b966900d11c00250a63511da2ebdad485e0c383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adsorption</topic><topic>Algorithms</topic><topic>Aminoacids, peptides. Hormones. Neuropeptides</topic><topic>Analytical chemistry</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Calcitonin - chemistry</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Chromatographic methods and physical methods associated with chromatography</topic><topic>Chromatography</topic><topic>Chromatography, High Pressure Liquid - methods</topic><topic>Chromatography, Ion Exchange - methods</topic><topic>Chromatography, Liquid - methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Theoretical</topic><topic>Multiobjective</topic><topic>Nonlinear Dynamics</topic><topic>Optimization</topic><topic>Other chromatographic methods</topic><topic>Proteins</topic><topic>Solvent-gradient</topic><topic>Solvents - analysis</topic><topic>Solvents - chemistry</topic><topic>Solvents - classification</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarafder, Abhijit</creatorcontrib><creatorcontrib>Aumann, Lars</creatorcontrib><creatorcontrib>Müller-Späth, Thomas</creatorcontrib><creatorcontrib>Morbidelli, Massimo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarafder, Abhijit</au><au>Aumann, Lars</au><au>Müller-Späth, Thomas</au><au>Morbidelli, Massimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2007-10-05</date><risdate>2007</risdate><volume>1167</volume><issue>1</issue><spage>42</spage><epage>53</epage><pages>42-53</pages><issn>0021-9673</issn><coden>JOCRAM</coden><abstract>Solvent gradient chromatography is quite often used in analytical studies for decreasing the analysis time of samples having components with widely different retention behaviour. Several studies, both theoretical and experimental, have been reported on the optimization of gradient profiles in improving analytical separation performance, suggesting various linear and non-linear gradients. In preparative chromatography, on the other hand, though solvent gradient is being increasingly used (especially in bioseparation) to improve the product yield and productivity, there is a dearth of literature and clearer understanding of the effect(s) of modifier gradients on the separation performance. For this, the gradients used in applications are of relatively simple profiles like step or linear gradients, obtained through hand optimization based on experience and intuition. Significant improvements, however, can be expected using the state-of-the art modelling of chromatographic processes and optimization routines running on widely available hi-speed desktop computers. In this work we are reporting such an optimization procedure to improve the purification of an industrial multi-component mixture, containing 65.8% of Calcitonin as the main product, in an overloaded reversed-phase column. The work comprises both theoretical simulations and their experimental validation using multilinear gradients as optimization variable. The study produced interesting insights for modifier gradient design, like using peak deformation of the target peptide to increase yield and productivity, and improved our understanding of the effect of modifier gradients in non-linear separations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17765250</pmid><doi>10.1016/j.chroma.2007.07.086</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9673 |
ispartof | Journal of Chromatography A, 2007-10, Vol.1167 (1), p.42-53 |
issn | 0021-9673 |
language | eng |
recordid | cdi_proquest_miscellaneous_68277197 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adsorption Algorithms Aminoacids, peptides. Hormones. Neuropeptides Analytical chemistry Analytical, structural and metabolic biochemistry Biological and medical sciences Calcitonin - chemistry Calibration Chemistry Chromatographic methods and physical methods associated with chromatography Chromatography Chromatography, High Pressure Liquid - methods Chromatography, Ion Exchange - methods Chromatography, Liquid - methods Exact sciences and technology Fundamental and applied biological sciences. Psychology Hydrophobic and Hydrophilic Interactions Models, Theoretical Multiobjective Nonlinear Dynamics Optimization Other chromatographic methods Proteins Solvent-gradient Solvents - analysis Solvents - chemistry Solvents - classification Spectrophotometry, Ultraviolet Thermodynamics |
title | Improvement of an overloaded, multi-component, solvent gradient bioseparation through multiobjective optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20an%20overloaded,%20multi-component,%20solvent%20gradient%20bioseparation%20through%20multiobjective%20optimization&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Tarafder,%20Abhijit&rft.date=2007-10-05&rft.volume=1167&rft.issue=1&rft.spage=42&rft.epage=53&rft.pages=42-53&rft.issn=0021-9673&rft.coden=JOCRAM&rft_id=info:doi/10.1016/j.chroma.2007.07.086&rft_dat=%3Cproquest_cross%3E68277197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68277197&rft_id=info:pmid/17765250&rft_els_id=S0021967307013180&rfr_iscdi=true |