Shear elasticity of fluids at low-frequent shear influence

The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74 kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2006-12, Vol.44, p.e1491-e1494
Hauptverfasser: Badmaev, Badma B., Budaev, Ochir R., Dembelova, Tuyana S., Damdinov, Bair B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1494
container_issue
container_start_page e1491
container_title Ultrasonics
container_volume 44
creator Badmaev, Badma B.
Budaev, Ochir R.
Dembelova, Tuyana S.
Damdinov, Bair B.
description The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74 kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus ( G) and the tangent of mechanical loss angle (tan θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the G and tan θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.
doi_str_mv 10.1016/j.ultras.2006.05.149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68276696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X06001879</els_id><sourcerecordid>68276696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4Mobk6_gUhP3lrzNGmaehBk-AYDDyp4C2leMKNbZ5Iq-_ZmduDN03P4_563H0LngAvAwK6WxdBFL0NRYswKXBVAmwM0BV7TvGkYP0RTjCnkrKTvE3QSwhJjoBzIMZoA40AJLafo-uXDSJ-ZTobolIvbrLeZ7QanQyZj1vXfufXmczDrmIVf1K1TbNbKnKIjK7tgzvZ1ht7u717nj_ni-eFpfrvIFS1ZzKkEClhqStpGslqTErQivK6YJZwrYlmVCk5xpYBJVStqeWVaLalVLSnJDF2Ocze-T4eEKFYuKNN1cm36IQjGy5qxhiWQjqDyfQjeWLHxbiX9VgAWO2diKUZnYudM4EokZ6ntYj9_aFdG_zXtJSXgZgRM-vLLGS-CcjsD2nmjotC9-3_DD-UIf3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68276696</pqid></control><display><type>article</type><title>Shear elasticity of fluids at low-frequent shear influence</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Badmaev, Badma B. ; Budaev, Ochir R. ; Dembelova, Tuyana S. ; Damdinov, Bair B.</creator><creatorcontrib>Badmaev, Badma B. ; Budaev, Ochir R. ; Dembelova, Tuyana S. ; Damdinov, Bair B.</creatorcontrib><description>The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74 kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus ( G) and the tangent of mechanical loss angle (tan θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the G and tan θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2006.05.149</identifier><identifier>PMID: 16814342</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acoustic method ; Liquid ; Nonlinearity ; Shear elasticity ; Shear wave</subject><ispartof>Ultrasonics, 2006-12, Vol.44, p.e1491-e1494</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</citedby><cites>FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultras.2006.05.149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16814342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badmaev, Badma B.</creatorcontrib><creatorcontrib>Budaev, Ochir R.</creatorcontrib><creatorcontrib>Dembelova, Tuyana S.</creatorcontrib><creatorcontrib>Damdinov, Bair B.</creatorcontrib><title>Shear elasticity of fluids at low-frequent shear influence</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74 kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus ( G) and the tangent of mechanical loss angle (tan θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the G and tan θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.</description><subject>Acoustic method</subject><subject>Liquid</subject><subject>Nonlinearity</subject><subject>Shear elasticity</subject><subject>Shear wave</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4Mobk6_gUhP3lrzNGmaehBk-AYDDyp4C2leMKNbZ5Iq-_ZmduDN03P4_563H0LngAvAwK6WxdBFL0NRYswKXBVAmwM0BV7TvGkYP0RTjCnkrKTvE3QSwhJjoBzIMZoA40AJLafo-uXDSJ-ZTobolIvbrLeZ7QanQyZj1vXfufXmczDrmIVf1K1TbNbKnKIjK7tgzvZ1ht7u717nj_ni-eFpfrvIFS1ZzKkEClhqStpGslqTErQivK6YJZwrYlmVCk5xpYBJVStqeWVaLalVLSnJDF2Ocze-T4eEKFYuKNN1cm36IQjGy5qxhiWQjqDyfQjeWLHxbiX9VgAWO2diKUZnYudM4EokZ6ntYj9_aFdG_zXtJSXgZgRM-vLLGS-CcjsD2nmjotC9-3_DD-UIf3I</recordid><startdate>20061222</startdate><enddate>20061222</enddate><creator>Badmaev, Badma B.</creator><creator>Budaev, Ochir R.</creator><creator>Dembelova, Tuyana S.</creator><creator>Damdinov, Bair B.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061222</creationdate><title>Shear elasticity of fluids at low-frequent shear influence</title><author>Badmaev, Badma B. ; Budaev, Ochir R. ; Dembelova, Tuyana S. ; Damdinov, Bair B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustic method</topic><topic>Liquid</topic><topic>Nonlinearity</topic><topic>Shear elasticity</topic><topic>Shear wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badmaev, Badma B.</creatorcontrib><creatorcontrib>Budaev, Ochir R.</creatorcontrib><creatorcontrib>Dembelova, Tuyana S.</creatorcontrib><creatorcontrib>Damdinov, Bair B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badmaev, Badma B.</au><au>Budaev, Ochir R.</au><au>Dembelova, Tuyana S.</au><au>Damdinov, Bair B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear elasticity of fluids at low-frequent shear influence</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2006-12-22</date><risdate>2006</risdate><volume>44</volume><spage>e1491</spage><epage>e1494</epage><pages>e1491-e1494</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74 kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus ( G) and the tangent of mechanical loss angle (tan θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the G and tan θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>16814342</pmid><doi>10.1016/j.ultras.2006.05.149</doi></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2006-12, Vol.44, p.e1491-e1494
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_68276696
source Elsevier ScienceDirect Journals Complete
subjects Acoustic method
Liquid
Nonlinearity
Shear elasticity
Shear wave
title Shear elasticity of fluids at low-frequent shear influence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20elasticity%20of%20fluids%20at%20low-frequent%20shear%20influence&rft.jtitle=Ultrasonics&rft.au=Badmaev,%20Badma%20B.&rft.date=2006-12-22&rft.volume=44&rft.spage=e1491&rft.epage=e1494&rft.pages=e1491-e1494&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/j.ultras.2006.05.149&rft_dat=%3Cproquest_cross%3E68276696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68276696&rft_id=info:pmid/16814342&rft_els_id=S0041624X06001879&rfr_iscdi=true