Shear elasticity of fluids at low-frequent shear influence
The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74 kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the...
Gespeichert in:
Veröffentlicht in: | Ultrasonics 2006-12, Vol.44, p.e1491-e1494 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1494 |
---|---|
container_issue | |
container_start_page | e1491 |
container_title | Ultrasonics |
container_volume | 44 |
creator | Badmaev, Badma B. Budaev, Ochir R. Dembelova, Tuyana S. Damdinov, Bair B. |
description | The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74
kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus (
G) and the tangent of mechanical loss angle (tan
θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the
G and tan
θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results. |
doi_str_mv | 10.1016/j.ultras.2006.05.149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68276696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X06001879</els_id><sourcerecordid>68276696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4Mobk6_gUhP3lrzNGmaehBk-AYDDyp4C2leMKNbZ5Iq-_ZmduDN03P4_563H0LngAvAwK6WxdBFL0NRYswKXBVAmwM0BV7TvGkYP0RTjCnkrKTvE3QSwhJjoBzIMZoA40AJLafo-uXDSJ-ZTobolIvbrLeZ7QanQyZj1vXfufXmczDrmIVf1K1TbNbKnKIjK7tgzvZ1ht7u717nj_ni-eFpfrvIFS1ZzKkEClhqStpGslqTErQivK6YJZwrYlmVCk5xpYBJVStqeWVaLalVLSnJDF2Ocze-T4eEKFYuKNN1cm36IQjGy5qxhiWQjqDyfQjeWLHxbiX9VgAWO2diKUZnYudM4EokZ6ntYj9_aFdG_zXtJSXgZgRM-vLLGS-CcjsD2nmjotC9-3_DD-UIf3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68276696</pqid></control><display><type>article</type><title>Shear elasticity of fluids at low-frequent shear influence</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Badmaev, Badma B. ; Budaev, Ochir R. ; Dembelova, Tuyana S. ; Damdinov, Bair B.</creator><creatorcontrib>Badmaev, Badma B. ; Budaev, Ochir R. ; Dembelova, Tuyana S. ; Damdinov, Bair B.</creatorcontrib><description>The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74
kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus (
G) and the tangent of mechanical loss angle (tan
θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the
G and tan
θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/j.ultras.2006.05.149</identifier><identifier>PMID: 16814342</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acoustic method ; Liquid ; Nonlinearity ; Shear elasticity ; Shear wave</subject><ispartof>Ultrasonics, 2006-12, Vol.44, p.e1491-e1494</ispartof><rights>2006 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</citedby><cites>FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultras.2006.05.149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16814342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badmaev, Badma B.</creatorcontrib><creatorcontrib>Budaev, Ochir R.</creatorcontrib><creatorcontrib>Dembelova, Tuyana S.</creatorcontrib><creatorcontrib>Damdinov, Bair B.</creatorcontrib><title>Shear elasticity of fluids at low-frequent shear influence</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74
kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus (
G) and the tangent of mechanical loss angle (tan
θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the
G and tan
θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.</description><subject>Acoustic method</subject><subject>Liquid</subject><subject>Nonlinearity</subject><subject>Shear elasticity</subject><subject>Shear wave</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4Mobk6_gUhP3lrzNGmaehBk-AYDDyp4C2leMKNbZ5Iq-_ZmduDN03P4_563H0LngAvAwK6WxdBFL0NRYswKXBVAmwM0BV7TvGkYP0RTjCnkrKTvE3QSwhJjoBzIMZoA40AJLafo-uXDSJ-ZTobolIvbrLeZ7QanQyZj1vXfufXmczDrmIVf1K1TbNbKnKIjK7tgzvZ1ht7u717nj_ni-eFpfrvIFS1ZzKkEClhqStpGslqTErQivK6YJZwrYlmVCk5xpYBJVStqeWVaLalVLSnJDF2Ocze-T4eEKFYuKNN1cm36IQjGy5qxhiWQjqDyfQjeWLHxbiX9VgAWO2diKUZnYudM4EokZ6ntYj9_aFdG_zXtJSXgZgRM-vLLGS-CcjsD2nmjotC9-3_DD-UIf3I</recordid><startdate>20061222</startdate><enddate>20061222</enddate><creator>Badmaev, Badma B.</creator><creator>Budaev, Ochir R.</creator><creator>Dembelova, Tuyana S.</creator><creator>Damdinov, Bair B.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061222</creationdate><title>Shear elasticity of fluids at low-frequent shear influence</title><author>Badmaev, Badma B. ; Budaev, Ochir R. ; Dembelova, Tuyana S. ; Damdinov, Bair B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4a1410ad43b9a67d321dc38756f388c3f6588c043b5c16ac7c4f85ebda4fcb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustic method</topic><topic>Liquid</topic><topic>Nonlinearity</topic><topic>Shear elasticity</topic><topic>Shear wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badmaev, Badma B.</creatorcontrib><creatorcontrib>Budaev, Ochir R.</creatorcontrib><creatorcontrib>Dembelova, Tuyana S.</creatorcontrib><creatorcontrib>Damdinov, Bair B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badmaev, Badma B.</au><au>Budaev, Ochir R.</au><au>Dembelova, Tuyana S.</au><au>Damdinov, Bair B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear elasticity of fluids at low-frequent shear influence</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2006-12-22</date><risdate>2006</risdate><volume>44</volume><spage>e1491</spage><epage>e1494</epage><pages>e1491-e1494</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><abstract>The visco-elastic properties of liquids have been investigated using acoustical resonance method. Piezoquatrz performed tangential oscillations on the main resonance frequency of 74
kHz contacts by the one end of horizontal surface with the studied liquid layer covered by quartz cover-plate. So the stagnant shear waves are installed in layer. The solution of interaction of piezoquartz–liquid layer–cover-plate gives three methods of determination of the real shear modulus (
G) and the tangent of mechanical loss angle (tan
θ) of liquid. The first method is realized at smaller thickness of liquid layer then the length of shear wave. Liquids of different classes have been studied using this method: polymer liquids, oils, glycols and alcohols. The second method is connected with the propagation of shear wave in liquid layer, parameters of which are determined the
G and tan
θ. And the third method is based on the determination of limit shift of resonance frequencies at completes damping of shear wave in thick layer of liquid. All these three methods give satisfactory agreement of results.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>16814342</pmid><doi>10.1016/j.ultras.2006.05.149</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2006-12, Vol.44, p.e1491-e1494 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_68276696 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Acoustic method Liquid Nonlinearity Shear elasticity Shear wave |
title | Shear elasticity of fluids at low-frequent shear influence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear%20elasticity%20of%20fluids%20at%20low-frequent%20shear%20influence&rft.jtitle=Ultrasonics&rft.au=Badmaev,%20Badma%20B.&rft.date=2006-12-22&rft.volume=44&rft.spage=e1491&rft.epage=e1494&rft.pages=e1491-e1494&rft.issn=0041-624X&rft.eissn=1874-9968&rft_id=info:doi/10.1016/j.ultras.2006.05.149&rft_dat=%3Cproquest_cross%3E68276696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68276696&rft_id=info:pmid/16814342&rft_els_id=S0041624X06001879&rfr_iscdi=true |