Pore Conductivity Control at the Hundred-Nanometer Scale: An Experimental and Theoretical Study

We report on the observation of an unexpected mechanism that controls conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. Transport measurements of positively charged methyl viologen performed by absorption spectroscopy under various pH conditions demonstrate that for 100‐nm‐di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2006-12, Vol.2 (12), p.1504-1510
Hauptverfasser: Létant, Sonia E., Schaldach, Charlene M., Johnson, Mackenzie R., Sawvel, April, Bourcier, William L., Wilson, William D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1510
container_issue 12
container_start_page 1504
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 2
creator Létant, Sonia E.
Schaldach, Charlene M.
Johnson, Mackenzie R.
Sawvel, April
Bourcier, William L.
Wilson, William D.
description We report on the observation of an unexpected mechanism that controls conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. Transport measurements of positively charged methyl viologen performed by absorption spectroscopy under various pH conditions demonstrate that for 100‐nm‐diameter pores at pH 2 conductivity is blocked, while at pH 5 the ions move through the membrane according to diffusion laws. An oppositely charged molecular ion, naphthalene disulfonate, in the same membrane, shows the opposite trend: diffusion of the negative ion at pH 2 and very low conductivity at pH 5. The influence of parameters such as ionic strength and membrane surface coating are also investigated. A theoretical study of the system shows that at the 100‐nm scale the magnitude of the electric field in the vicinity of the pores is too small to account for the experimental observations; rather, it is the surface trapping of the mobile ion (Cl− or Na+) that gives rise to the observed control of the conductivity. This surprising effect has potential applications for high‐throughput separation of large molecules and bio‐organisms. An unexpected mechanism has been shown to control pore conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. The image shows an SEM top view of a polycarbonate membrane with 100‐nm‐diameter pores (above) and the corresponding potential and electric fields calculated in the vicinity of the mouth of one of the pores (below). Such an effect has potential applications for the high‐throughput separation of large molecules and bio‐organisms.
doi_str_mv 10.1002/smll.200600263
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68271752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68271752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4123-9c251ac951f7f2d38b52541dc25d5f5ea2be2b3ed075edeecefe8cfa7130c0cd3</originalsourceid><addsrcrecordid>eNqFkE1PGzEQhi3Uis9eOSKfetvUY8frLDcUUai0UKQF9Wg59qxY2I9geyn59zhKFLhxmhnreV_JDyGnwCbAGP8VuradcMbydORijxxCDiLLZ7z4ttuBHZCjEJ4YE8Cnap8cgIJCMBCHRN8NHul86N1oY_PaxNX6iH5oqYk0PiK9Hnvn0WW3ph86jOhpZU2L5_Sip5dvS_RNh300ie8dvX_E1BebRNAqjm51Qr7Xpg34YzuPycPvy_v5dVb-vfozvygzOwUussJyCcYWEmpVcydmC8nlFFx6drKWaPgC-UKgY0qiQ7RY48zWRoFgllknjsnPTe_SDy8jhqi7JlhsW9PjMAadjChQkn8J8kIKLvM1ONmA1g8heKz1Mn3V-JUGptfu9dq93rlPgbNt87jo0H3gW9kJKDbA_6bF1Rd1uropy8_l2SbbhIhvu6zxzzpXQkn97_ZK36kbmLGy0pV4BzF8oR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29532562</pqid></control><display><type>article</type><title>Pore Conductivity Control at the Hundred-Nanometer Scale: An Experimental and Theoretical Study</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Létant, Sonia E. ; Schaldach, Charlene M. ; Johnson, Mackenzie R. ; Sawvel, April ; Bourcier, William L. ; Wilson, William D.</creator><creatorcontrib>Létant, Sonia E. ; Schaldach, Charlene M. ; Johnson, Mackenzie R. ; Sawvel, April ; Bourcier, William L. ; Wilson, William D.</creatorcontrib><description>We report on the observation of an unexpected mechanism that controls conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. Transport measurements of positively charged methyl viologen performed by absorption spectroscopy under various pH conditions demonstrate that for 100‐nm‐diameter pores at pH 2 conductivity is blocked, while at pH 5 the ions move through the membrane according to diffusion laws. An oppositely charged molecular ion, naphthalene disulfonate, in the same membrane, shows the opposite trend: diffusion of the negative ion at pH 2 and very low conductivity at pH 5. The influence of parameters such as ionic strength and membrane surface coating are also investigated. A theoretical study of the system shows that at the 100‐nm scale the magnitude of the electric field in the vicinity of the pores is too small to account for the experimental observations; rather, it is the surface trapping of the mobile ion (Cl− or Na+) that gives rise to the observed control of the conductivity. This surprising effect has potential applications for high‐throughput separation of large molecules and bio‐organisms. An unexpected mechanism has been shown to control pore conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. The image shows an SEM top view of a polycarbonate membrane with 100‐nm‐diameter pores (above) and the corresponding potential and electric fields calculated in the vicinity of the mouth of one of the pores (below). Such an effect has potential applications for the high‐throughput separation of large molecules and bio‐organisms.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200600263</identifier><identifier>PMID: 17193013</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Chlorides ; conductivity ; Diffusion ; Electric Conductivity ; Hydrogen-Ion Concentration ; ions ; membranes ; Membranes, Artificial ; Models, Chemical ; Paraquat - chemistry ; porous materials ; Spectrophotometry, Ultraviolet ; transport</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2006-12, Vol.2 (12), p.1504-1510</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4123-9c251ac951f7f2d38b52541dc25d5f5ea2be2b3ed075edeecefe8cfa7130c0cd3</citedby><cites>FETCH-LOGICAL-c4123-9c251ac951f7f2d38b52541dc25d5f5ea2be2b3ed075edeecefe8cfa7130c0cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200600263$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17193013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Létant, Sonia E.</creatorcontrib><creatorcontrib>Schaldach, Charlene M.</creatorcontrib><creatorcontrib>Johnson, Mackenzie R.</creatorcontrib><creatorcontrib>Sawvel, April</creatorcontrib><creatorcontrib>Bourcier, William L.</creatorcontrib><creatorcontrib>Wilson, William D.</creatorcontrib><title>Pore Conductivity Control at the Hundred-Nanometer Scale: An Experimental and Theoretical Study</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>We report on the observation of an unexpected mechanism that controls conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. Transport measurements of positively charged methyl viologen performed by absorption spectroscopy under various pH conditions demonstrate that for 100‐nm‐diameter pores at pH 2 conductivity is blocked, while at pH 5 the ions move through the membrane according to diffusion laws. An oppositely charged molecular ion, naphthalene disulfonate, in the same membrane, shows the opposite trend: diffusion of the negative ion at pH 2 and very low conductivity at pH 5. The influence of parameters such as ionic strength and membrane surface coating are also investigated. A theoretical study of the system shows that at the 100‐nm scale the magnitude of the electric field in the vicinity of the pores is too small to account for the experimental observations; rather, it is the surface trapping of the mobile ion (Cl− or Na+) that gives rise to the observed control of the conductivity. This surprising effect has potential applications for high‐throughput separation of large molecules and bio‐organisms. An unexpected mechanism has been shown to control pore conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. The image shows an SEM top view of a polycarbonate membrane with 100‐nm‐diameter pores (above) and the corresponding potential and electric fields calculated in the vicinity of the mouth of one of the pores (below). Such an effect has potential applications for the high‐throughput separation of large molecules and bio‐organisms.</description><subject>Chlorides</subject><subject>conductivity</subject><subject>Diffusion</subject><subject>Electric Conductivity</subject><subject>Hydrogen-Ion Concentration</subject><subject>ions</subject><subject>membranes</subject><subject>Membranes, Artificial</subject><subject>Models, Chemical</subject><subject>Paraquat - chemistry</subject><subject>porous materials</subject><subject>Spectrophotometry, Ultraviolet</subject><subject>transport</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PGzEQhi3Uis9eOSKfetvUY8frLDcUUai0UKQF9Wg59qxY2I9geyn59zhKFLhxmhnreV_JDyGnwCbAGP8VuradcMbydORijxxCDiLLZ7z4ttuBHZCjEJ4YE8Cnap8cgIJCMBCHRN8NHul86N1oY_PaxNX6iH5oqYk0PiK9Hnvn0WW3ph86jOhpZU2L5_Sip5dvS_RNh300ie8dvX_E1BebRNAqjm51Qr7Xpg34YzuPycPvy_v5dVb-vfozvygzOwUussJyCcYWEmpVcydmC8nlFFx6drKWaPgC-UKgY0qiQ7RY48zWRoFgllknjsnPTe_SDy8jhqi7JlhsW9PjMAadjChQkn8J8kIKLvM1ONmA1g8heKz1Mn3V-JUGptfu9dq93rlPgbNt87jo0H3gW9kJKDbA_6bF1Rd1uropy8_l2SbbhIhvu6zxzzpXQkn97_ZK36kbmLGy0pV4BzF8oR8</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Létant, Sonia E.</creator><creator>Schaldach, Charlene M.</creator><creator>Johnson, Mackenzie R.</creator><creator>Sawvel, April</creator><creator>Bourcier, William L.</creator><creator>Wilson, William D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200612</creationdate><title>Pore Conductivity Control at the Hundred-Nanometer Scale: An Experimental and Theoretical Study</title><author>Létant, Sonia E. ; Schaldach, Charlene M. ; Johnson, Mackenzie R. ; Sawvel, April ; Bourcier, William L. ; Wilson, William D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4123-9c251ac951f7f2d38b52541dc25d5f5ea2be2b3ed075edeecefe8cfa7130c0cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chlorides</topic><topic>conductivity</topic><topic>Diffusion</topic><topic>Electric Conductivity</topic><topic>Hydrogen-Ion Concentration</topic><topic>ions</topic><topic>membranes</topic><topic>Membranes, Artificial</topic><topic>Models, Chemical</topic><topic>Paraquat - chemistry</topic><topic>porous materials</topic><topic>Spectrophotometry, Ultraviolet</topic><topic>transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Létant, Sonia E.</creatorcontrib><creatorcontrib>Schaldach, Charlene M.</creatorcontrib><creatorcontrib>Johnson, Mackenzie R.</creatorcontrib><creatorcontrib>Sawvel, April</creatorcontrib><creatorcontrib>Bourcier, William L.</creatorcontrib><creatorcontrib>Wilson, William D.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Létant, Sonia E.</au><au>Schaldach, Charlene M.</au><au>Johnson, Mackenzie R.</au><au>Sawvel, April</au><au>Bourcier, William L.</au><au>Wilson, William D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pore Conductivity Control at the Hundred-Nanometer Scale: An Experimental and Theoretical Study</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2006-12</date><risdate>2006</risdate><volume>2</volume><issue>12</issue><spage>1504</spage><epage>1510</epage><pages>1504-1510</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>We report on the observation of an unexpected mechanism that controls conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. Transport measurements of positively charged methyl viologen performed by absorption spectroscopy under various pH conditions demonstrate that for 100‐nm‐diameter pores at pH 2 conductivity is blocked, while at pH 5 the ions move through the membrane according to diffusion laws. An oppositely charged molecular ion, naphthalene disulfonate, in the same membrane, shows the opposite trend: diffusion of the negative ion at pH 2 and very low conductivity at pH 5. The influence of parameters such as ionic strength and membrane surface coating are also investigated. A theoretical study of the system shows that at the 100‐nm scale the magnitude of the electric field in the vicinity of the pores is too small to account for the experimental observations; rather, it is the surface trapping of the mobile ion (Cl− or Na+) that gives rise to the observed control of the conductivity. This surprising effect has potential applications for high‐throughput separation of large molecules and bio‐organisms. An unexpected mechanism has been shown to control pore conductivity at the 100‐nm scale on track‐etched polycarbonate membranes. The image shows an SEM top view of a polycarbonate membrane with 100‐nm‐diameter pores (above) and the corresponding potential and electric fields calculated in the vicinity of the mouth of one of the pores (below). Such an effect has potential applications for the high‐throughput separation of large molecules and bio‐organisms.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>17193013</pmid><doi>10.1002/smll.200600263</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2006-12, Vol.2 (12), p.1504-1510
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_68271752
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Chlorides
conductivity
Diffusion
Electric Conductivity
Hydrogen-Ion Concentration
ions
membranes
Membranes, Artificial
Models, Chemical
Paraquat - chemistry
porous materials
Spectrophotometry, Ultraviolet
transport
title Pore Conductivity Control at the Hundred-Nanometer Scale: An Experimental and Theoretical Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pore%20Conductivity%20Control%20at%20the%20Hundred-Nanometer%20Scale:%20An%20Experimental%20and%20Theoretical%20Study&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=L%C3%A9tant,%20Sonia%E2%80%85E.&rft.date=2006-12&rft.volume=2&rft.issue=12&rft.spage=1504&rft.epage=1510&rft.pages=1504-1510&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200600263&rft_dat=%3Cproquest_cross%3E68271752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29532562&rft_id=info:pmid/17193013&rfr_iscdi=true