Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy

Lactate production under anaerobic conditions is indicative of human performance levels, fatigue, and hydration. Elevated lactate levels result from several medical conditions including congestive heart failure, hypoxia, and diabetic ketoacidosis. Real-time detection of lactate can therefore be usef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-09, Vol.79 (18), p.6927-6932
Hauptverfasser: Shah, Nilam C, Lyandres, Olga, Walsh, Joseph T, Glucksberg, Matthew R, Van Duyne, Richard P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6932
container_issue 18
container_start_page 6927
container_title Analytical chemistry (Washington)
container_volume 79
creator Shah, Nilam C
Lyandres, Olga
Walsh, Joseph T
Glucksberg, Matthew R
Van Duyne, Richard P
description Lactate production under anaerobic conditions is indicative of human performance levels, fatigue, and hydration. Elevated lactate levels result from several medical conditions including congestive heart failure, hypoxia, and diabetic ketoacidosis. Real-time detection of lactate can therefore be useful for monitoring these medical conditions, posttrauma situations, and in evaluating the physical condition of a person engaged in strenuous activity. This paper represents a proof-of-concept demonstration of a lactate sensor based on surface-enhanced Raman spectroscopy (SERS). Furthermore, it points the direction toward a multianalyte sensing platform. A mixed decanethiol/mercaptohexanol partition layer is used herein to demonstrate SERS lactate sensing. The reversibility of the sensor surface is characterized by exposing it alternately to aqueous lactate solutions and buffer without lactate. The partitioning and departitioning time constants were both found to be ∼30 s. In addition, physiological lactate levels (i.e., 6−240 mg/dL) were quantified in phosphate-buffered saline medium using multivariate analysis with a root-mean-square error of prediction of 39.6 mg/dL. Finally, reversibility was tested for sequential glucose and lactate exposures. Complete partitioning and departitioning of both analytes was demonstrated.
doi_str_mv 10.1021/ac0704107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68269683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68269683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-6f33c30f8a6aecad3c4e8191ca02bd981a5d502a1eaf0d7e6817578b223a306d3</originalsourceid><addsrcrecordid>eNpl0N9rFDEQB_AgFntWH_wHZBEUfNg6k9wm2UcttT84aLlrFXwJc9lsu3Uveya7YP8Dn_sn9i9p9JYe2JcMZD4MM1_G3iDsI3D8RBYUTBHUMzbBgkMutebP2QQARM4VwC57GeMNACKgfMF2USUhOJ-wHzOyPfUuI19lC_drcL5vqM3G7_s_d0ftYLvoUtPHxl9ll__exRBqsi4_9NfkrauyOa3IZ4u1s33oou3Wt6_YTk1tdK_Huscuvx5eHBzns7Ojk4PPs5ymoPtc1kJYAbUmSc5SJezUaSzREvBlVWqkoiqAEzqqoVJOalSF0kvOBQmQldhjHzZz16FL-8ferJpoXduSd90QjdRcllKLBN_9B2-6Ifi0m-GotC5RYkIfN8imM2JwtVmHZkXh1iCYv2mbx7STfTsOHJYrV23lGG8C70dA0VJbh5RVE7euBM1BlsnlG9fE3v1-7FP4aaQSqjAX5wsD3-ffzufqizndziUbt0c8XfABPH2h6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217889161</pqid></control><display><type>article</type><title>Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Shah, Nilam C ; Lyandres, Olga ; Walsh, Joseph T ; Glucksberg, Matthew R ; Van Duyne, Richard P</creator><creatorcontrib>Shah, Nilam C ; Lyandres, Olga ; Walsh, Joseph T ; Glucksberg, Matthew R ; Van Duyne, Richard P</creatorcontrib><description>Lactate production under anaerobic conditions is indicative of human performance levels, fatigue, and hydration. Elevated lactate levels result from several medical conditions including congestive heart failure, hypoxia, and diabetic ketoacidosis. Real-time detection of lactate can therefore be useful for monitoring these medical conditions, posttrauma situations, and in evaluating the physical condition of a person engaged in strenuous activity. This paper represents a proof-of-concept demonstration of a lactate sensor based on surface-enhanced Raman spectroscopy (SERS). Furthermore, it points the direction toward a multianalyte sensing platform. A mixed decanethiol/mercaptohexanol partition layer is used herein to demonstrate SERS lactate sensing. The reversibility of the sensor surface is characterized by exposing it alternately to aqueous lactate solutions and buffer without lactate. The partitioning and departitioning time constants were both found to be ∼30 s. In addition, physiological lactate levels (i.e., 6−240 mg/dL) were quantified in phosphate-buffered saline medium using multivariate analysis with a root-mean-square error of prediction of 39.6 mg/dL. Finally, reversibility was tested for sequential glucose and lactate exposures. Complete partitioning and departitioning of both analytes was demonstrated.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac0704107</identifier><identifier>PMID: 17688322</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Aqueous solutions ; Biosensing Techniques ; Chemistry ; Exact sciences and technology ; General, instrumentation ; Glucose ; Glucose - analysis ; Glucose - chemistry ; Humans ; Lactic Acid - analysis ; Lactic Acid - chemistry ; Medical disorders ; Multivariate analysis ; Spectrometric and optical methods ; Spectrum analysis ; Spectrum Analysis, Raman - methods ; Surface Plasmon Resonance - methods ; Surface Properties</subject><ispartof>Analytical chemistry (Washington), 2007-09, Vol.79 (18), p.6927-6932</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Sep 15, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-6f33c30f8a6aecad3c4e8191ca02bd981a5d502a1eaf0d7e6817578b223a306d3</citedby><cites>FETCH-LOGICAL-a408t-6f33c30f8a6aecad3c4e8191ca02bd981a5d502a1eaf0d7e6817578b223a306d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac0704107$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac0704107$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19082069$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17688322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Nilam C</creatorcontrib><creatorcontrib>Lyandres, Olga</creatorcontrib><creatorcontrib>Walsh, Joseph T</creatorcontrib><creatorcontrib>Glucksberg, Matthew R</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><title>Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Lactate production under anaerobic conditions is indicative of human performance levels, fatigue, and hydration. Elevated lactate levels result from several medical conditions including congestive heart failure, hypoxia, and diabetic ketoacidosis. Real-time detection of lactate can therefore be useful for monitoring these medical conditions, posttrauma situations, and in evaluating the physical condition of a person engaged in strenuous activity. This paper represents a proof-of-concept demonstration of a lactate sensor based on surface-enhanced Raman spectroscopy (SERS). Furthermore, it points the direction toward a multianalyte sensing platform. A mixed decanethiol/mercaptohexanol partition layer is used herein to demonstrate SERS lactate sensing. The reversibility of the sensor surface is characterized by exposing it alternately to aqueous lactate solutions and buffer without lactate. The partitioning and departitioning time constants were both found to be ∼30 s. In addition, physiological lactate levels (i.e., 6−240 mg/dL) were quantified in phosphate-buffered saline medium using multivariate analysis with a root-mean-square error of prediction of 39.6 mg/dL. Finally, reversibility was tested for sequential glucose and lactate exposures. Complete partitioning and departitioning of both analytes was demonstrated.</description><subject>Analytical chemistry</subject><subject>Aqueous solutions</subject><subject>Biosensing Techniques</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Glucose</subject><subject>Glucose - analysis</subject><subject>Glucose - chemistry</subject><subject>Humans</subject><subject>Lactic Acid - analysis</subject><subject>Lactic Acid - chemistry</subject><subject>Medical disorders</subject><subject>Multivariate analysis</subject><subject>Spectrometric and optical methods</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Surface Properties</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0N9rFDEQB_AgFntWH_wHZBEUfNg6k9wm2UcttT84aLlrFXwJc9lsu3Uveya7YP8Dn_sn9i9p9JYe2JcMZD4MM1_G3iDsI3D8RBYUTBHUMzbBgkMutebP2QQARM4VwC57GeMNACKgfMF2USUhOJ-wHzOyPfUuI19lC_drcL5vqM3G7_s_d0ftYLvoUtPHxl9ll__exRBqsi4_9NfkrauyOa3IZ4u1s33oou3Wt6_YTk1tdK_Huscuvx5eHBzns7Ojk4PPs5ymoPtc1kJYAbUmSc5SJezUaSzREvBlVWqkoiqAEzqqoVJOalSF0kvOBQmQldhjHzZz16FL-8ferJpoXduSd90QjdRcllKLBN_9B2-6Ifi0m-GotC5RYkIfN8imM2JwtVmHZkXh1iCYv2mbx7STfTsOHJYrV23lGG8C70dA0VJbh5RVE7euBM1BlsnlG9fE3v1-7FP4aaQSqjAX5wsD3-ffzufqizndziUbt0c8XfABPH2h6A</recordid><startdate>20070915</startdate><enddate>20070915</enddate><creator>Shah, Nilam C</creator><creator>Lyandres, Olga</creator><creator>Walsh, Joseph T</creator><creator>Glucksberg, Matthew R</creator><creator>Van Duyne, Richard P</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070915</creationdate><title>Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy</title><author>Shah, Nilam C ; Lyandres, Olga ; Walsh, Joseph T ; Glucksberg, Matthew R ; Van Duyne, Richard P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-6f33c30f8a6aecad3c4e8191ca02bd981a5d502a1eaf0d7e6817578b223a306d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical chemistry</topic><topic>Aqueous solutions</topic><topic>Biosensing Techniques</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Glucose</topic><topic>Glucose - analysis</topic><topic>Glucose - chemistry</topic><topic>Humans</topic><topic>Lactic Acid - analysis</topic><topic>Lactic Acid - chemistry</topic><topic>Medical disorders</topic><topic>Multivariate analysis</topic><topic>Spectrometric and optical methods</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Nilam C</creatorcontrib><creatorcontrib>Lyandres, Olga</creatorcontrib><creatorcontrib>Walsh, Joseph T</creatorcontrib><creatorcontrib>Glucksberg, Matthew R</creatorcontrib><creatorcontrib>Van Duyne, Richard P</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Nilam C</au><au>Lyandres, Olga</au><au>Walsh, Joseph T</au><au>Glucksberg, Matthew R</au><au>Van Duyne, Richard P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2007-09-15</date><risdate>2007</risdate><volume>79</volume><issue>18</issue><spage>6927</spage><epage>6932</epage><pages>6927-6932</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Lactate production under anaerobic conditions is indicative of human performance levels, fatigue, and hydration. Elevated lactate levels result from several medical conditions including congestive heart failure, hypoxia, and diabetic ketoacidosis. Real-time detection of lactate can therefore be useful for monitoring these medical conditions, posttrauma situations, and in evaluating the physical condition of a person engaged in strenuous activity. This paper represents a proof-of-concept demonstration of a lactate sensor based on surface-enhanced Raman spectroscopy (SERS). Furthermore, it points the direction toward a multianalyte sensing platform. A mixed decanethiol/mercaptohexanol partition layer is used herein to demonstrate SERS lactate sensing. The reversibility of the sensor surface is characterized by exposing it alternately to aqueous lactate solutions and buffer without lactate. The partitioning and departitioning time constants were both found to be ∼30 s. In addition, physiological lactate levels (i.e., 6−240 mg/dL) were quantified in phosphate-buffered saline medium using multivariate analysis with a root-mean-square error of prediction of 39.6 mg/dL. Finally, reversibility was tested for sequential glucose and lactate exposures. Complete partitioning and departitioning of both analytes was demonstrated.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17688322</pmid><doi>10.1021/ac0704107</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2007-09, Vol.79 (18), p.6927-6932
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_68269683
source MEDLINE; ACS Publications
subjects Analytical chemistry
Aqueous solutions
Biosensing Techniques
Chemistry
Exact sciences and technology
General, instrumentation
Glucose
Glucose - analysis
Glucose - chemistry
Humans
Lactic Acid - analysis
Lactic Acid - chemistry
Medical disorders
Multivariate analysis
Spectrometric and optical methods
Spectrum analysis
Spectrum Analysis, Raman - methods
Surface Plasmon Resonance - methods
Surface Properties
title Lactate and Sequential Lactate−Glucose Sensing Using Surface-Enhanced Raman Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactate%20and%20Sequential%20Lactate%E2%88%92Glucose%20Sensing%20Using%20Surface-Enhanced%20Raman%20Spectroscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Shah,%20Nilam%20C&rft.date=2007-09-15&rft.volume=79&rft.issue=18&rft.spage=6927&rft.epage=6932&rft.pages=6927-6932&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac0704107&rft_dat=%3Cproquest_cross%3E68269683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217889161&rft_id=info:pmid/17688322&rfr_iscdi=true