Ensemble modeling for analysis of cell signaling dynamics
Systems biology iteratively combines experimentation with mathematical modeling. However, limited mechanistic knowledge, conflicting hypotheses and scarce experimental data severely hamper the development of predictive mechanistic models in many areas of biology. Even under such high uncertainty, we...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2007-09, Vol.25 (9), p.1001-1006 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 |
---|---|
container_issue | 9 |
container_start_page | 1001 |
container_title | Nature biotechnology |
container_volume | 25 |
creator | Stelling, Jörg Kuepfer, Lars Peter, Matthias Sauer, Uwe |
description | Systems biology iteratively combines experimentation with mathematical modeling. However, limited mechanistic knowledge, conflicting hypotheses and scarce experimental data severely hamper the development of predictive mechanistic models in many areas of biology. Even under such high uncertainty, we show here that ensemble modeling, when combined with targeted experimental analysis, can unravel key operating principles in complex cellular pathways. For proof of concept, we develop a library of mechanistically alternative dynamic models for the highly conserved target-of-rapamycin (TOR) pathway of Saccharomyces cerevisiae. In contrast to the prevailing view of a de novo assembly of type 2A phosphatases (PP2As), our integrated computational and experimental analysis proposes a specificity factor, based on Tap42p-Tip41p, for PP2As as the key signaling mechanism that is quantitatively consistent with all available experimental data. Beyond revising our picture of TOR signaling, we expect ensemble modeling to help elucidate other insufficiently characterized cellular circuits. |
doi_str_mv | 10.1038/nbt1330 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68264377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A192622893</galeid><sourcerecordid>A192622893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-917541a45f8781b31b4225457577635fa634118b5e5e39ba0f7c32f70b4c465a3</originalsourceid><addsrcrecordid>eNqNkUtrGzEUhUVoaZy05BckDF00ZDGprt6zNMZ5gMGQtNkKzVgyE2YkV5qB-t9Xxm5DsknRQper756rw0HoDPA1YKq--3oASvERmgBnogRRiQ-5xkqWGLg4RicpPWOMBRPiEzoGqXJBYYKquU-2rztb9GFlu9avCxdiYbzptqlNRXBFY7uuSO06t3bPq603fdukz-ijM12yXw73Kfp5M_8xuysXy9v72XRRNnnFUFYgOQPDuFNSQU2hZoRwxiWXUlDujKAMQNXcckur2mAnG0qcxDXLAtzQU_Rtr7uJ4ddo06D7Nu3-ZLwNY9JCEcGolO-CUCnFGBEZ_PoGfA5jzPaSJoRQzBjbqV3vobXprG69C0M0TT4rm90Hb12b-1OoiCBEVTQPXL0ayMxgfw9rM6ak7x8f_p9dPr1mL_dsE0NK0Tq9iW1v4lYD1rvw9SH8TF4cfI11b1cv3CHtDJzvAW-GMdp_wF-BPykIrrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222304447</pqid></control><display><type>article</type><title>Ensemble modeling for analysis of cell signaling dynamics</title><source>MEDLINE</source><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Stelling, Jörg ; Kuepfer, Lars ; Peter, Matthias ; Sauer, Uwe</creator><creatorcontrib>Stelling, Jörg ; Kuepfer, Lars ; Peter, Matthias ; Sauer, Uwe</creatorcontrib><description>Systems biology iteratively combines experimentation with mathematical modeling. However, limited mechanistic knowledge, conflicting hypotheses and scarce experimental data severely hamper the development of predictive mechanistic models in many areas of biology. Even under such high uncertainty, we show here that ensemble modeling, when combined with targeted experimental analysis, can unravel key operating principles in complex cellular pathways. For proof of concept, we develop a library of mechanistically alternative dynamic models for the highly conserved target-of-rapamycin (TOR) pathway of Saccharomyces cerevisiae. In contrast to the prevailing view of a de novo assembly of type 2A phosphatases (PP2As), our integrated computational and experimental analysis proposes a specificity factor, based on Tap42p-Tip41p, for PP2As as the key signaling mechanism that is quantitatively consistent with all available experimental data. Beyond revising our picture of TOR signaling, we expect ensemble modeling to help elucidate other insufficiently characterized cellular circuits.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt1330</identifier><identifier>PMID: 17846631</identifier><language>eng</language><publisher>United States: Nature Publishing Group</publisher><subject>Biotechnology ; Cellular biology ; Experimental data ; Mathematical models ; Models, Biological ; Protein-Serine-Threonine Kinases ; Reproducibility of Results ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Signal Transduction</subject><ispartof>Nature biotechnology, 2007-09, Vol.25 (9), p.1001-1006</ispartof><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-917541a45f8781b31b4225457577635fa634118b5e5e39ba0f7c32f70b4c465a3</citedby><cites>FETCH-LOGICAL-c466t-917541a45f8781b31b4225457577635fa634118b5e5e39ba0f7c32f70b4c465a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17846631$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stelling, Jörg</creatorcontrib><creatorcontrib>Kuepfer, Lars</creatorcontrib><creatorcontrib>Peter, Matthias</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><title>Ensemble modeling for analysis of cell signaling dynamics</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><description>Systems biology iteratively combines experimentation with mathematical modeling. However, limited mechanistic knowledge, conflicting hypotheses and scarce experimental data severely hamper the development of predictive mechanistic models in many areas of biology. Even under such high uncertainty, we show here that ensemble modeling, when combined with targeted experimental analysis, can unravel key operating principles in complex cellular pathways. For proof of concept, we develop a library of mechanistically alternative dynamic models for the highly conserved target-of-rapamycin (TOR) pathway of Saccharomyces cerevisiae. In contrast to the prevailing view of a de novo assembly of type 2A phosphatases (PP2As), our integrated computational and experimental analysis proposes a specificity factor, based on Tap42p-Tip41p, for PP2As as the key signaling mechanism that is quantitatively consistent with all available experimental data. Beyond revising our picture of TOR signaling, we expect ensemble modeling to help elucidate other insufficiently characterized cellular circuits.</description><subject>Biotechnology</subject><subject>Cellular biology</subject><subject>Experimental data</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Reproducibility of Results</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Signal Transduction</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUtrGzEUhUVoaZy05BckDF00ZDGprt6zNMZ5gMGQtNkKzVgyE2YkV5qB-t9Xxm5DsknRQper756rw0HoDPA1YKq--3oASvERmgBnogRRiQ-5xkqWGLg4RicpPWOMBRPiEzoGqXJBYYKquU-2rztb9GFlu9avCxdiYbzptqlNRXBFY7uuSO06t3bPq603fdukz-ijM12yXw73Kfp5M_8xuysXy9v72XRRNnnFUFYgOQPDuFNSQU2hZoRwxiWXUlDujKAMQNXcckur2mAnG0qcxDXLAtzQU_Rtr7uJ4ddo06D7Nu3-ZLwNY9JCEcGolO-CUCnFGBEZ_PoGfA5jzPaSJoRQzBjbqV3vobXprG69C0M0TT4rm90Hb12b-1OoiCBEVTQPXL0ayMxgfw9rM6ak7x8f_p9dPr1mL_dsE0NK0Tq9iW1v4lYD1rvw9SH8TF4cfI11b1cv3CHtDJzvAW-GMdp_wF-BPykIrrw</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Stelling, Jörg</creator><creator>Kuepfer, Lars</creator><creator>Peter, Matthias</creator><creator>Sauer, Uwe</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Ensemble modeling for analysis of cell signaling dynamics</title><author>Stelling, Jörg ; Kuepfer, Lars ; Peter, Matthias ; Sauer, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-917541a45f8781b31b4225457577635fa634118b5e5e39ba0f7c32f70b4c465a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biotechnology</topic><topic>Cellular biology</topic><topic>Experimental data</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Reproducibility of Results</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stelling, Jörg</creatorcontrib><creatorcontrib>Kuepfer, Lars</creatorcontrib><creatorcontrib>Peter, Matthias</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stelling, Jörg</au><au>Kuepfer, Lars</au><au>Peter, Matthias</au><au>Sauer, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ensemble modeling for analysis of cell signaling dynamics</atitle><jtitle>Nature biotechnology</jtitle><addtitle>Nat Biotechnol</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>25</volume><issue>9</issue><spage>1001</spage><epage>1006</epage><pages>1001-1006</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Systems biology iteratively combines experimentation with mathematical modeling. However, limited mechanistic knowledge, conflicting hypotheses and scarce experimental data severely hamper the development of predictive mechanistic models in many areas of biology. Even under such high uncertainty, we show here that ensemble modeling, when combined with targeted experimental analysis, can unravel key operating principles in complex cellular pathways. For proof of concept, we develop a library of mechanistically alternative dynamic models for the highly conserved target-of-rapamycin (TOR) pathway of Saccharomyces cerevisiae. In contrast to the prevailing view of a de novo assembly of type 2A phosphatases (PP2As), our integrated computational and experimental analysis proposes a specificity factor, based on Tap42p-Tip41p, for PP2As as the key signaling mechanism that is quantitatively consistent with all available experimental data. Beyond revising our picture of TOR signaling, we expect ensemble modeling to help elucidate other insufficiently characterized cellular circuits.</abstract><cop>United States</cop><pub>Nature Publishing Group</pub><pmid>17846631</pmid><doi>10.1038/nbt1330</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2007-09, Vol.25 (9), p.1001-1006 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_proquest_miscellaneous_68264377 |
source | MEDLINE; Nature Journals Online; Alma/SFX Local Collection |
subjects | Biotechnology Cellular biology Experimental data Mathematical models Models, Biological Protein-Serine-Threonine Kinases Reproducibility of Results Saccharomyces cerevisiae Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Signal Transduction |
title | Ensemble modeling for analysis of cell signaling dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ensemble%20modeling%20for%20analysis%20of%20cell%20signaling%20dynamics&rft.jtitle=Nature%20biotechnology&rft.au=Stelling,%20J%C3%B6rg&rft.date=2007-09-01&rft.volume=25&rft.issue=9&rft.spage=1001&rft.epage=1006&rft.pages=1001-1006&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/nbt1330&rft_dat=%3Cgale_proqu%3EA192622893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222304447&rft_id=info:pmid/17846631&rft_galeid=A192622893&rfr_iscdi=true |