Ranking of network elements based on functional substructures

Centrality analysis has been shown to be a valuable method for the structural analysis of biological networks. It is used to identify key elements within networks and to rank network elements such that experiments can be tailored to interesting candidates. Several centrality measures have been studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2007-10, Vol.248 (3), p.471-479
Hauptverfasser: Koschützki, Dirk, Schwöbbermeyer, Henning, Schreiber, Falk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 3
container_start_page 471
container_title Journal of theoretical biology
container_volume 248
creator Koschützki, Dirk
Schwöbbermeyer, Henning
Schreiber, Falk
description Centrality analysis has been shown to be a valuable method for the structural analysis of biological networks. It is used to identify key elements within networks and to rank network elements such that experiments can be tailored to interesting candidates. Several centrality measures have been studied, in particular for gene regulatory, metabolic and protein interaction networks. However, these centralities have been developed in other fields of science and are not adapted to biological networks. In particular, they ignore functional building blocks within biological networks and therefore do not consider specific network substructures of interest. We incorporate functional substructures (motifs) into network centrality analysis and present a new approach to rank vertices of networks. A method for motif-based centrality analysis is presented and two extensions are discussed which broaden the idea of motif-based centrality to specific functions of particular motif elements, and to the consideration of classes of related motifs. The presented method is applied to the gene regulatory network of Escherichia coli, where it yields interesting results about key regulators.
doi_str_mv 10.1016/j.jtbi.2007.05.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68261225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519307002780</els_id><sourcerecordid>19780794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f0e3b0b0a016e24dcb4af587930c47edcb7f7e249f39ef96ba6bec20e5c256e93</originalsourceid><addsrcrecordid>eNqFkE1LJDEQhoOs6Dj6BzwsffLWbSXdSXdADyJ-gSCInkOSrkjGnrSbpF3899vDDHhzT0VRz_tSPIScUqgoUHG-qlbZ-IoBtBXwCupujywoSF52vKG_yAKAsZJTWR-So5RWACCbWhyQQ9qKpqFULMjlsw7vPrwVoysC5r9jfC9wwDWGnAqjE_bFGAo3BZv9GPRQpMmkHCebp4jpmOw7PSQ82c0leb29ebm-Lx-f7h6urx5LW3c8lw6wNmBAz18ja3prGu1418oabNPivLeunQ_S1RKdFEYLg5YBcsu4QFkvydm29yOOfyZMWa19sjgMOuA4JSU6Jihj_L8glW0H7WxhSdgWtHFMKaJTH9GvdfxSFNTGrlqpjV21sauAq9nuHPq9a5_MGvvvyE7nDFxsAZxlfHqMKlmPwWLvI9qs-tH_1P8PtpuMKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19780794</pqid></control><display><type>article</type><title>Ranking of network elements based on functional substructures</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Koschützki, Dirk ; Schwöbbermeyer, Henning ; Schreiber, Falk</creator><creatorcontrib>Koschützki, Dirk ; Schwöbbermeyer, Henning ; Schreiber, Falk</creatorcontrib><description>Centrality analysis has been shown to be a valuable method for the structural analysis of biological networks. It is used to identify key elements within networks and to rank network elements such that experiments can be tailored to interesting candidates. Several centrality measures have been studied, in particular for gene regulatory, metabolic and protein interaction networks. However, these centralities have been developed in other fields of science and are not adapted to biological networks. In particular, they ignore functional building blocks within biological networks and therefore do not consider specific network substructures of interest. We incorporate functional substructures (motifs) into network centrality analysis and present a new approach to rank vertices of networks. A method for motif-based centrality analysis is presented and two extensions are discussed which broaden the idea of motif-based centrality to specific functions of particular motif elements, and to the consideration of classes of related motifs. The presented method is applied to the gene regulatory network of Escherichia coli, where it yields interesting results about key regulators.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2007.05.038</identifier><identifier>PMID: 17644116</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; DNA, Bacterial - genetics ; Escherichia coli ; Escherichia coli - genetics ; Gene Expression Regulation, Bacterial - genetics ; Gene regulatory network ; Gene Regulatory Networks - genetics ; Genes, Bacterial - genetics ; Genes, Regulator - genetics ; Metabolic Networks and Pathways ; Models, Genetic ; Network analysis ; Network centrality ; Network motif ; Transcription, Genetic - genetics</subject><ispartof>Journal of theoretical biology, 2007-10, Vol.248 (3), p.471-479</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f0e3b0b0a016e24dcb4af587930c47edcb7f7e249f39ef96ba6bec20e5c256e93</citedby><cites>FETCH-LOGICAL-c385t-f0e3b0b0a016e24dcb4af587930c47edcb7f7e249f39ef96ba6bec20e5c256e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519307002780$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17644116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koschützki, Dirk</creatorcontrib><creatorcontrib>Schwöbbermeyer, Henning</creatorcontrib><creatorcontrib>Schreiber, Falk</creatorcontrib><title>Ranking of network elements based on functional substructures</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Centrality analysis has been shown to be a valuable method for the structural analysis of biological networks. It is used to identify key elements within networks and to rank network elements such that experiments can be tailored to interesting candidates. Several centrality measures have been studied, in particular for gene regulatory, metabolic and protein interaction networks. However, these centralities have been developed in other fields of science and are not adapted to biological networks. In particular, they ignore functional building blocks within biological networks and therefore do not consider specific network substructures of interest. We incorporate functional substructures (motifs) into network centrality analysis and present a new approach to rank vertices of networks. A method for motif-based centrality analysis is presented and two extensions are discussed which broaden the idea of motif-based centrality to specific functions of particular motif elements, and to the consideration of classes of related motifs. The presented method is applied to the gene regulatory network of Escherichia coli, where it yields interesting results about key regulators.</description><subject>Algorithms</subject><subject>DNA, Bacterial - genetics</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression Regulation, Bacterial - genetics</subject><subject>Gene regulatory network</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes, Bacterial - genetics</subject><subject>Genes, Regulator - genetics</subject><subject>Metabolic Networks and Pathways</subject><subject>Models, Genetic</subject><subject>Network analysis</subject><subject>Network centrality</subject><subject>Network motif</subject><subject>Transcription, Genetic - genetics</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LJDEQhoOs6Dj6BzwsffLWbSXdSXdADyJ-gSCInkOSrkjGnrSbpF3899vDDHhzT0VRz_tSPIScUqgoUHG-qlbZ-IoBtBXwCupujywoSF52vKG_yAKAsZJTWR-So5RWACCbWhyQQ9qKpqFULMjlsw7vPrwVoysC5r9jfC9wwDWGnAqjE_bFGAo3BZv9GPRQpMmkHCebp4jpmOw7PSQ82c0leb29ebm-Lx-f7h6urx5LW3c8lw6wNmBAz18ja3prGu1418oabNPivLeunQ_S1RKdFEYLg5YBcsu4QFkvydm29yOOfyZMWa19sjgMOuA4JSU6Jihj_L8glW0H7WxhSdgWtHFMKaJTH9GvdfxSFNTGrlqpjV21sauAq9nuHPq9a5_MGvvvyE7nDFxsAZxlfHqMKlmPwWLvI9qs-tH_1P8PtpuMKg</recordid><startdate>20071007</startdate><enddate>20071007</enddate><creator>Koschützki, Dirk</creator><creator>Schwöbbermeyer, Henning</creator><creator>Schreiber, Falk</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20071007</creationdate><title>Ranking of network elements based on functional substructures</title><author>Koschützki, Dirk ; Schwöbbermeyer, Henning ; Schreiber, Falk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f0e3b0b0a016e24dcb4af587930c47edcb7f7e249f39ef96ba6bec20e5c256e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>DNA, Bacterial - genetics</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression Regulation, Bacterial - genetics</topic><topic>Gene regulatory network</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes, Bacterial - genetics</topic><topic>Genes, Regulator - genetics</topic><topic>Metabolic Networks and Pathways</topic><topic>Models, Genetic</topic><topic>Network analysis</topic><topic>Network centrality</topic><topic>Network motif</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koschützki, Dirk</creatorcontrib><creatorcontrib>Schwöbbermeyer, Henning</creatorcontrib><creatorcontrib>Schreiber, Falk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koschützki, Dirk</au><au>Schwöbbermeyer, Henning</au><au>Schreiber, Falk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ranking of network elements based on functional substructures</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2007-10-07</date><risdate>2007</risdate><volume>248</volume><issue>3</issue><spage>471</spage><epage>479</epage><pages>471-479</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Centrality analysis has been shown to be a valuable method for the structural analysis of biological networks. It is used to identify key elements within networks and to rank network elements such that experiments can be tailored to interesting candidates. Several centrality measures have been studied, in particular for gene regulatory, metabolic and protein interaction networks. However, these centralities have been developed in other fields of science and are not adapted to biological networks. In particular, they ignore functional building blocks within biological networks and therefore do not consider specific network substructures of interest. We incorporate functional substructures (motifs) into network centrality analysis and present a new approach to rank vertices of networks. A method for motif-based centrality analysis is presented and two extensions are discussed which broaden the idea of motif-based centrality to specific functions of particular motif elements, and to the consideration of classes of related motifs. The presented method is applied to the gene regulatory network of Escherichia coli, where it yields interesting results about key regulators.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17644116</pmid><doi>10.1016/j.jtbi.2007.05.038</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2007-10, Vol.248 (3), p.471-479
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_68261225
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
DNA, Bacterial - genetics
Escherichia coli
Escherichia coli - genetics
Gene Expression Regulation, Bacterial - genetics
Gene regulatory network
Gene Regulatory Networks - genetics
Genes, Bacterial - genetics
Genes, Regulator - genetics
Metabolic Networks and Pathways
Models, Genetic
Network analysis
Network centrality
Network motif
Transcription, Genetic - genetics
title Ranking of network elements based on functional substructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ranking%20of%20network%20elements%20based%20on%20functional%20substructures&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Kosch%C3%BCtzki,%20Dirk&rft.date=2007-10-07&rft.volume=248&rft.issue=3&rft.spage=471&rft.epage=479&rft.pages=471-479&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2007.05.038&rft_dat=%3Cproquest_cross%3E19780794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19780794&rft_id=info:pmid/17644116&rft_els_id=S0022519307002780&rfr_iscdi=true