Mechanism of Electrochemical Charge Transport in Individual Transition Metal Complexes

We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2006-12, Vol.128 (51), p.17132-17138
Hauptverfasser: Albrecht, Tim, Guckian, Adrian, Kuznetsov, Alexander M, Vos, Johannes G, Ulstrup, Jens
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17138
container_issue 51
container_start_page 17132
container_title Journal of the American Chemical Society
container_volume 128
creator Albrecht, Tim
Guckian, Adrian
Kuznetsov, Alexander M
Vos, Johannes G
Ulstrup, Jens
description We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (V bias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels.
doi_str_mv 10.1021/ja066213r
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68255173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68255173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-3de67f2fddea1cf731477b02f727e98bd5c8fe639a006aba2f39eaf3bff59cd33</originalsourceid><addsrcrecordid>eNpt0MtOwzAQBVALgWh5LPgBlA1ILAJ-JHa6RKU8JAoIClvLccbUJYmDnSD4e1JawYaVNb5HM9JF6IDgU4IpOVsozDklzG-gIUkpjlNC-SYaYoxpLDLOBmgnhEU_JjQj22hABBEi4WKIXqag56q2oYqciSYl6NY7PYfKalVG47nyrxDNvKpD43wb2Tq6qQv7YYuuj3_-bWtdHU2hXXpXNSV8QthDW0aVAfbX7y56vpzMxtfx7f3Vzfj8NlYJEW3MCuDCUFMUoIg2gpFEiBxTI6iAUZYXqc4McDZSGHOVK2rYCJRhuTHpSBeM7aLj1d7Gu_cOQisrGzSUparBdUHyjKYpEUt4soLauxA8GNl4Wyn_JQmWyxLlb4m9PVwv7fIKij-5bq0H8QrY0MLnb678m-xTkcrZw5O8u7hOZg-PT5L2_mjllQ5y4Tpf9538c_gb0nKJaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68255173</pqid></control><display><type>article</type><title>Mechanism of Electrochemical Charge Transport in Individual Transition Metal Complexes</title><source>American Chemical Society Journals</source><creator>Albrecht, Tim ; Guckian, Adrian ; Kuznetsov, Alexander M ; Vos, Johannes G ; Ulstrup, Jens</creator><creatorcontrib>Albrecht, Tim ; Guckian, Adrian ; Kuznetsov, Alexander M ; Vos, Johannes G ; Ulstrup, Jens</creatorcontrib><description>We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (V bias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja066213r</identifier><identifier>PMID: 17177467</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2006-12, Vol.128 (51), p.17132-17138</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-3de67f2fddea1cf731477b02f727e98bd5c8fe639a006aba2f39eaf3bff59cd33</citedby><cites>FETCH-LOGICAL-a417t-3de67f2fddea1cf731477b02f727e98bd5c8fe639a006aba2f39eaf3bff59cd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja066213r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja066213r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17177467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Albrecht, Tim</creatorcontrib><creatorcontrib>Guckian, Adrian</creatorcontrib><creatorcontrib>Kuznetsov, Alexander M</creatorcontrib><creatorcontrib>Vos, Johannes G</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><title>Mechanism of Electrochemical Charge Transport in Individual Transition Metal Complexes</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (V bias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpt0MtOwzAQBVALgWh5LPgBlA1ILAJ-JHa6RKU8JAoIClvLccbUJYmDnSD4e1JawYaVNb5HM9JF6IDgU4IpOVsozDklzG-gIUkpjlNC-SYaYoxpLDLOBmgnhEU_JjQj22hABBEi4WKIXqag56q2oYqciSYl6NY7PYfKalVG47nyrxDNvKpD43wb2Tq6qQv7YYuuj3_-bWtdHU2hXXpXNSV8QthDW0aVAfbX7y56vpzMxtfx7f3Vzfj8NlYJEW3MCuDCUFMUoIg2gpFEiBxTI6iAUZYXqc4McDZSGHOVK2rYCJRhuTHpSBeM7aLj1d7Gu_cOQisrGzSUparBdUHyjKYpEUt4soLauxA8GNl4Wyn_JQmWyxLlb4m9PVwv7fIKij-5bq0H8QrY0MLnb678m-xTkcrZw5O8u7hOZg-PT5L2_mjllQ5y4Tpf9538c_gb0nKJaQ</recordid><startdate>20061227</startdate><enddate>20061227</enddate><creator>Albrecht, Tim</creator><creator>Guckian, Adrian</creator><creator>Kuznetsov, Alexander M</creator><creator>Vos, Johannes G</creator><creator>Ulstrup, Jens</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061227</creationdate><title>Mechanism of Electrochemical Charge Transport in Individual Transition Metal Complexes</title><author>Albrecht, Tim ; Guckian, Adrian ; Kuznetsov, Alexander M ; Vos, Johannes G ; Ulstrup, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-3de67f2fddea1cf731477b02f727e98bd5c8fe639a006aba2f39eaf3bff59cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albrecht, Tim</creatorcontrib><creatorcontrib>Guckian, Adrian</creatorcontrib><creatorcontrib>Kuznetsov, Alexander M</creatorcontrib><creatorcontrib>Vos, Johannes G</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albrecht, Tim</au><au>Guckian, Adrian</au><au>Kuznetsov, Alexander M</au><au>Vos, Johannes G</au><au>Ulstrup, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Electrochemical Charge Transport in Individual Transition Metal Complexes</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2006-12-27</date><risdate>2006</risdate><volume>128</volume><issue>51</issue><spage>17132</spage><epage>17138</epage><pages>17132-17138</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (V bias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17177467</pmid><doi>10.1021/ja066213r</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2006-12, Vol.128 (51), p.17132-17138
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_68255173
source American Chemical Society Journals
title Mechanism of Electrochemical Charge Transport in Individual Transition Metal Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Electrochemical%20Charge%20Transport%20in%20Individual%20Transition%20Metal%20Complexes&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Albrecht,%20Tim&rft.date=2006-12-27&rft.volume=128&rft.issue=51&rft.spage=17132&rft.epage=17138&rft.pages=17132-17138&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja066213r&rft_dat=%3Cproquest_cross%3E68255173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68255173&rft_id=info:pmid/17177467&rfr_iscdi=true