Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients
Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featur...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2007-11, Vol.28 (33), p.5000-5006 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5006 |
---|---|
container_issue | 33 |
container_start_page | 5000 |
container_title | Biomaterials |
container_volume | 28 |
creator | Kunzler, Tobias P Huwiler, Christoph Drobek, Tanja Vörös, Janos Spencer, Nicholas D |
description | Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density. |
doi_str_mv | 10.1016/j.biomaterials.2007.08.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68250377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S014296120700614X</els_id><sourcerecordid>20467988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</originalsourceid><addsrcrecordid>eNqNkktv1TAQhS0EoreFv4AiFuwSxo4fCQskVKBUqtRFi8TOcpy54EsSB9tByr_H0b0SqJuy8us7Z6w5Q8hrChUFKt8eqs750SQMzgyxYgCqgqYCaJ-QHW1UU4oWxFOyA8pZ2UrKzsh5jAfIZ-DsOTmjSjFgnO5If7fGhNnM2SKmpV8Lvy98vvLdYGIqAsbZTxGL5IvJTD752X8PZv6xFt1ajGimuCm2p9mE7DJg2eMUXVqLzPUOpxRfkGf7_FN8eVovyNfPn-4vv5Q3t1fXlx9uSiskTaXppBXc2Br7Nu8Es9w0TIhm3wuBinIhuUDKmICOQ6sQTQeWCWWlktBhfUHeHH3n4H8tGJMeXbQ4DGZCv0QtsxvUSj0K1kBraFr-KMiAS9U2TQbfHUEbfIwB93oObjRh1RT0lpo-6H9T01tqGhqdU8viV6cqSzdi_1d6iikDH48A5u79dhh0tLmzFnsX0Cbde_d_dd4_sLGDm5w1w09cMR78EqZNQ3VkGvTdNj_b-IACkJR_q_8AbOnGdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20467988</pqid></control><display><type>article</type><title>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kunzler, Tobias P ; Huwiler, Christoph ; Drobek, Tanja ; Vörös, Janos ; Spencer, Nicholas D</creator><creatorcontrib>Kunzler, Tobias P ; Huwiler, Christoph ; Drobek, Tanja ; Vörös, Janos ; Spencer, Nicholas D</creatorcontrib><description>Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2007.08.009</identifier><identifier>PMID: 17720241</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Actins - chemistry ; Advanced Basic Science ; Animals ; Biocompatible Materials - chemistry ; Cell Membrane - metabolism ; Cell morphology ; Cell Proliferation ; Cells, Cultured ; Cytoplasm - metabolism ; Dentistry ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; Nanoparticle ; Nanoparticles - chemistry ; Nanotechnology - methods ; Nanotopography ; Osteoblast ; Osteoblasts - metabolism ; Particle Size ; Rats ; Surface Properties</subject><ispartof>Biomaterials, 2007-11, Vol.28 (33), p.5000-5006</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</citedby><cites>FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2007.08.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17720241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunzler, Tobias P</creatorcontrib><creatorcontrib>Huwiler, Christoph</creatorcontrib><creatorcontrib>Drobek, Tanja</creatorcontrib><creatorcontrib>Vörös, Janos</creatorcontrib><creatorcontrib>Spencer, Nicholas D</creatorcontrib><title>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.</description><subject>Actins - chemistry</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell morphology</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Cytoplasm - metabolism</subject><subject>Dentistry</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Fluorescence</subject><subject>Nanoparticle</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nanotopography</subject><subject>Osteoblast</subject><subject>Osteoblasts - metabolism</subject><subject>Particle Size</subject><subject>Rats</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1TAQhS0EoreFv4AiFuwSxo4fCQskVKBUqtRFi8TOcpy54EsSB9tByr_H0b0SqJuy8us7Z6w5Q8hrChUFKt8eqs750SQMzgyxYgCqgqYCaJ-QHW1UU4oWxFOyA8pZ2UrKzsh5jAfIZ-DsOTmjSjFgnO5If7fGhNnM2SKmpV8Lvy98vvLdYGIqAsbZTxGL5IvJTD752X8PZv6xFt1ajGimuCm2p9mE7DJg2eMUXVqLzPUOpxRfkGf7_FN8eVovyNfPn-4vv5Q3t1fXlx9uSiskTaXppBXc2Br7Nu8Es9w0TIhm3wuBinIhuUDKmICOQ6sQTQeWCWWlktBhfUHeHH3n4H8tGJMeXbQ4DGZCv0QtsxvUSj0K1kBraFr-KMiAS9U2TQbfHUEbfIwB93oObjRh1RT0lpo-6H9T01tqGhqdU8viV6cqSzdi_1d6iikDH48A5u79dhh0tLmzFnsX0Cbde_d_dd4_sLGDm5w1w09cMR78EqZNQ3VkGvTdNj_b-IACkJR_q_8AbOnGdw</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Kunzler, Tobias P</creator><creator>Huwiler, Christoph</creator><creator>Drobek, Tanja</creator><creator>Vörös, Janos</creator><creator>Spencer, Nicholas D</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</title><author>Kunzler, Tobias P ; Huwiler, Christoph ; Drobek, Tanja ; Vörös, Janos ; Spencer, Nicholas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actins - chemistry</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell morphology</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Cytoplasm - metabolism</topic><topic>Dentistry</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Fluorescence</topic><topic>Nanoparticle</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nanotopography</topic><topic>Osteoblast</topic><topic>Osteoblasts - metabolism</topic><topic>Particle Size</topic><topic>Rats</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunzler, Tobias P</creatorcontrib><creatorcontrib>Huwiler, Christoph</creatorcontrib><creatorcontrib>Drobek, Tanja</creatorcontrib><creatorcontrib>Vörös, Janos</creatorcontrib><creatorcontrib>Spencer, Nicholas D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunzler, Tobias P</au><au>Huwiler, Christoph</au><au>Drobek, Tanja</au><au>Vörös, Janos</au><au>Spencer, Nicholas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>28</volume><issue>33</issue><spage>5000</spage><epage>5006</epage><pages>5000-5006</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>17720241</pmid><doi>10.1016/j.biomaterials.2007.08.009</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2007-11, Vol.28 (33), p.5000-5006 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_68250377 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Actins - chemistry Advanced Basic Science Animals Biocompatible Materials - chemistry Cell Membrane - metabolism Cell morphology Cell Proliferation Cells, Cultured Cytoplasm - metabolism Dentistry Microscopy, Atomic Force Microscopy, Fluorescence Nanoparticle Nanoparticles - chemistry Nanotechnology - methods Nanotopography Osteoblast Osteoblasts - metabolism Particle Size Rats Surface Properties |
title | Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20study%20of%20osteoblast%20response%20to%20nanotopography%20by%20means%20of%20nanoparticle-density%20gradients&rft.jtitle=Biomaterials&rft.au=Kunzler,%20Tobias%20P&rft.date=2007-11-01&rft.volume=28&rft.issue=33&rft.spage=5000&rft.epage=5006&rft.pages=5000-5006&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2007.08.009&rft_dat=%3Cproquest_cross%3E20467988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20467988&rft_id=info:pmid/17720241&rft_els_id=1_s2_0_S014296120700614X&rfr_iscdi=true |