Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients

Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2007-11, Vol.28 (33), p.5000-5006
Hauptverfasser: Kunzler, Tobias P, Huwiler, Christoph, Drobek, Tanja, Vörös, Janos, Spencer, Nicholas D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5006
container_issue 33
container_start_page 5000
container_title Biomaterials
container_volume 28
creator Kunzler, Tobias P
Huwiler, Christoph
Drobek, Tanja
Vörös, Janos
Spencer, Nicholas D
description Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.
doi_str_mv 10.1016/j.biomaterials.2007.08.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68250377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S014296120700614X</els_id><sourcerecordid>20467988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</originalsourceid><addsrcrecordid>eNqNkktv1TAQhS0EoreFv4AiFuwSxo4fCQskVKBUqtRFi8TOcpy54EsSB9tByr_H0b0SqJuy8us7Z6w5Q8hrChUFKt8eqs750SQMzgyxYgCqgqYCaJ-QHW1UU4oWxFOyA8pZ2UrKzsh5jAfIZ-DsOTmjSjFgnO5If7fGhNnM2SKmpV8Lvy98vvLdYGIqAsbZTxGL5IvJTD752X8PZv6xFt1ajGimuCm2p9mE7DJg2eMUXVqLzPUOpxRfkGf7_FN8eVovyNfPn-4vv5Q3t1fXlx9uSiskTaXppBXc2Br7Nu8Es9w0TIhm3wuBinIhuUDKmICOQ6sQTQeWCWWlktBhfUHeHH3n4H8tGJMeXbQ4DGZCv0QtsxvUSj0K1kBraFr-KMiAS9U2TQbfHUEbfIwB93oObjRh1RT0lpo-6H9T01tqGhqdU8viV6cqSzdi_1d6iikDH48A5u79dhh0tLmzFnsX0Cbde_d_dd4_sLGDm5w1w09cMR78EqZNQ3VkGvTdNj_b-IACkJR_q_8AbOnGdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20467988</pqid></control><display><type>article</type><title>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kunzler, Tobias P ; Huwiler, Christoph ; Drobek, Tanja ; Vörös, Janos ; Spencer, Nicholas D</creator><creatorcontrib>Kunzler, Tobias P ; Huwiler, Christoph ; Drobek, Tanja ; Vörös, Janos ; Spencer, Nicholas D</creatorcontrib><description>Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2007.08.009</identifier><identifier>PMID: 17720241</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Actins - chemistry ; Advanced Basic Science ; Animals ; Biocompatible Materials - chemistry ; Cell Membrane - metabolism ; Cell morphology ; Cell Proliferation ; Cells, Cultured ; Cytoplasm - metabolism ; Dentistry ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; Nanoparticle ; Nanoparticles - chemistry ; Nanotechnology - methods ; Nanotopography ; Osteoblast ; Osteoblasts - metabolism ; Particle Size ; Rats ; Surface Properties</subject><ispartof>Biomaterials, 2007-11, Vol.28 (33), p.5000-5006</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</citedby><cites>FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2007.08.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17720241$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kunzler, Tobias P</creatorcontrib><creatorcontrib>Huwiler, Christoph</creatorcontrib><creatorcontrib>Drobek, Tanja</creatorcontrib><creatorcontrib>Vörös, Janos</creatorcontrib><creatorcontrib>Spencer, Nicholas D</creatorcontrib><title>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.</description><subject>Actins - chemistry</subject><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell morphology</subject><subject>Cell Proliferation</subject><subject>Cells, Cultured</subject><subject>Cytoplasm - metabolism</subject><subject>Dentistry</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Fluorescence</subject><subject>Nanoparticle</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology - methods</subject><subject>Nanotopography</subject><subject>Osteoblast</subject><subject>Osteoblasts - metabolism</subject><subject>Particle Size</subject><subject>Rats</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1TAQhS0EoreFv4AiFuwSxo4fCQskVKBUqtRFi8TOcpy54EsSB9tByr_H0b0SqJuy8us7Z6w5Q8hrChUFKt8eqs750SQMzgyxYgCqgqYCaJ-QHW1UU4oWxFOyA8pZ2UrKzsh5jAfIZ-DsOTmjSjFgnO5If7fGhNnM2SKmpV8Lvy98vvLdYGIqAsbZTxGL5IvJTD752X8PZv6xFt1ajGimuCm2p9mE7DJg2eMUXVqLzPUOpxRfkGf7_FN8eVovyNfPn-4vv5Q3t1fXlx9uSiskTaXppBXc2Br7Nu8Es9w0TIhm3wuBinIhuUDKmICOQ6sQTQeWCWWlktBhfUHeHH3n4H8tGJMeXbQ4DGZCv0QtsxvUSj0K1kBraFr-KMiAS9U2TQbfHUEbfIwB93oObjRh1RT0lpo-6H9T01tqGhqdU8viV6cqSzdi_1d6iikDH48A5u79dhh0tLmzFnsX0Cbde_d_dd4_sLGDm5w1w09cMR78EqZNQ3VkGvTdNj_b-IACkJR_q_8AbOnGdw</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Kunzler, Tobias P</creator><creator>Huwiler, Christoph</creator><creator>Drobek, Tanja</creator><creator>Vörös, Janos</creator><creator>Spencer, Nicholas D</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</title><author>Kunzler, Tobias P ; Huwiler, Christoph ; Drobek, Tanja ; Vörös, Janos ; Spencer, Nicholas D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-ab6c54ac3ed96c552c4a82558fd55e7145645e12250b4097eeab0c257c6760be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Actins - chemistry</topic><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell morphology</topic><topic>Cell Proliferation</topic><topic>Cells, Cultured</topic><topic>Cytoplasm - metabolism</topic><topic>Dentistry</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Fluorescence</topic><topic>Nanoparticle</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology - methods</topic><topic>Nanotopography</topic><topic>Osteoblast</topic><topic>Osteoblasts - metabolism</topic><topic>Particle Size</topic><topic>Rats</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kunzler, Tobias P</creatorcontrib><creatorcontrib>Huwiler, Christoph</creatorcontrib><creatorcontrib>Drobek, Tanja</creatorcontrib><creatorcontrib>Vörös, Janos</creatorcontrib><creatorcontrib>Spencer, Nicholas D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kunzler, Tobias P</au><au>Huwiler, Christoph</au><au>Drobek, Tanja</au><au>Vörös, Janos</au><au>Spencer, Nicholas D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>28</volume><issue>33</issue><spage>5000</spage><epage>5006</epage><pages>5000-5006</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Features over a wide range of length scales affect the biological response to a surface. While the influence of micro-features has been extensively studied, the effect of nano-features has only rarely been systematically investigated. We have developed a simple method to produce nano-featured gradients by kinetically controlled adsorption of negatively charged silica nanoparticles onto positively charged, poly(ethylene imine) (PEI)-coated silicon wafers. Subsequent sintering of the particles allowed a tuning of the particle morphology and resulted in a firm anchoring of the particles to the surface. Particle-density gradients were characterized by atomic force microscopy (AFM). Cell experiments with rat calvarial osteoblasts (RCO) on nano-featured gradients exhibited a significant decrease in proliferation at locations with higher particle coverage. Seven days post seeding, the number of osteoblasts was eight times higher at positions without particles compared to positions with maximum particle coverage. While cells spread well and developed a well-organized actin network in the absence of particles, spreading and formation of a strong actin network was considerably hindered at locations with maximum particle density.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>17720241</pmid><doi>10.1016/j.biomaterials.2007.08.009</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2007-11, Vol.28 (33), p.5000-5006
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_68250377
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Actins - chemistry
Advanced Basic Science
Animals
Biocompatible Materials - chemistry
Cell Membrane - metabolism
Cell morphology
Cell Proliferation
Cells, Cultured
Cytoplasm - metabolism
Dentistry
Microscopy, Atomic Force
Microscopy, Fluorescence
Nanoparticle
Nanoparticles - chemistry
Nanotechnology - methods
Nanotopography
Osteoblast
Osteoblasts - metabolism
Particle Size
Rats
Surface Properties
title Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20study%20of%20osteoblast%20response%20to%20nanotopography%20by%20means%20of%20nanoparticle-density%20gradients&rft.jtitle=Biomaterials&rft.au=Kunzler,%20Tobias%20P&rft.date=2007-11-01&rft.volume=28&rft.issue=33&rft.spage=5000&rft.epage=5006&rft.pages=5000-5006&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2007.08.009&rft_dat=%3Cproquest_cross%3E20467988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20467988&rft_id=info:pmid/17720241&rft_els_id=1_s2_0_S014296120700614X&rfr_iscdi=true