Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis

Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2006-12, Vol.78 (24), p.8169-8174
Hauptverfasser: Funakoshi, Kei, Suzuki, Hiroaki, Takeuchi, Shoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8174
container_issue 24
container_start_page 8169
container_title Analytical chemistry (Washington)
container_volume 78
creator Funakoshi, Kei
Suzuki, Hiroaki
Takeuchi, Shoji
description Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.
doi_str_mv 10.1021/ac0613479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68248669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1204604341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</originalsourceid><addsrcrecordid>eNpl0E9rFDEYBvAgit1WD34BCYIFD1Pf_M8c69ZtLbtYaD2HbCZTUmcm22RG3G9v6i5d0FMO-fHyPA9C7wicEaDks3UgCeOqfoFmRFCopNb0JZoBAKuoAjhCxzk_ABACRL5GR0QRKTTwGbpfhk1o8JfQ2a1PeBFTb8cQB7ze4nkcRuvGMNzjVRziX5FxGLDFq-BSbLspNMHhC_8rOI_bmPDK9-tkB49vUhx9oeeD7bY55DfoVWu77N_u3xP0Y_H1bn5VLb9ffpufLyvLFR-rWoiGO1uXpK4hnkkPtdCaq5Y3pKVCcS48A3C1opLJNW-YElTVxHJvBQd2gk53dzcpPk4-j6YP2fmuK6HilI3UlGsp6wI__AMf4pRK2mwoUVqrogr6tEOlbc7Jt2aTQm_T1hAwT9Ob5-mLfb8_OK173xzkfusCPu6Bzc52bdnJhXxwmknF4alCtXMhj_73879NP41Upa65u7k1t5xdLy5obdjhrnX5UOL_gH8A9fujqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217887866</pqid></control><display><type>article</type><title>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Funakoshi, Kei ; Suzuki, Hiroaki ; Takeuchi, Shoji</creator><creatorcontrib>Funakoshi, Kei ; Suzuki, Hiroaki ; Takeuchi, Shoji</creatorcontrib><description>Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac0613479</identifier><identifier>PMID: 17165804</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Automation ; Biosensing Techniques ; Cellular biology ; Chemistry ; Electrochemistry ; Exact sciences and technology ; General, instrumentation ; Ion Channels - analysis ; Ion Channels - physiology ; Lipid Bilayers - chemistry ; Lipids ; Membrane Proteins - analysis ; Membrane Proteins - physiology ; Membranes ; Membranes, Artificial ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Organic Chemicals - chemistry ; Proteins ; Solvents - chemistry ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2006-12, Vol.78 (24), p.8169-8174</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</citedby><cites>FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac0613479$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac0613479$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18367400$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17165804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Funakoshi, Kei</creatorcontrib><creatorcontrib>Suzuki, Hiroaki</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><title>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.</description><subject>Analytical chemistry</subject><subject>Automation</subject><subject>Biosensing Techniques</subject><subject>Cellular biology</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Ion Channels - analysis</subject><subject>Ion Channels - physiology</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - physiology</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Organic Chemicals - chemistry</subject><subject>Proteins</subject><subject>Solvents - chemistry</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E9rFDEYBvAgit1WD34BCYIFD1Pf_M8c69ZtLbtYaD2HbCZTUmcm22RG3G9v6i5d0FMO-fHyPA9C7wicEaDks3UgCeOqfoFmRFCopNb0JZoBAKuoAjhCxzk_ABACRL5GR0QRKTTwGbpfhk1o8JfQ2a1PeBFTb8cQB7ze4nkcRuvGMNzjVRziX5FxGLDFq-BSbLspNMHhC_8rOI_bmPDK9-tkB49vUhx9oeeD7bY55DfoVWu77N_u3xP0Y_H1bn5VLb9ffpufLyvLFR-rWoiGO1uXpK4hnkkPtdCaq5Y3pKVCcS48A3C1opLJNW-YElTVxHJvBQd2gk53dzcpPk4-j6YP2fmuK6HilI3UlGsp6wI__AMf4pRK2mwoUVqrogr6tEOlbc7Jt2aTQm_T1hAwT9Ob5-mLfb8_OK173xzkfusCPu6Bzc52bdnJhXxwmknF4alCtXMhj_73879NP41Upa65u7k1t5xdLy5obdjhrnX5UOL_gH8A9fujqQ</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Funakoshi, Kei</creator><creator>Suzuki, Hiroaki</creator><creator>Takeuchi, Shoji</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061215</creationdate><title>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</title><author>Funakoshi, Kei ; Suzuki, Hiroaki ; Takeuchi, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical chemistry</topic><topic>Automation</topic><topic>Biosensing Techniques</topic><topic>Cellular biology</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Ion Channels - analysis</topic><topic>Ion Channels - physiology</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - physiology</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Organic Chemicals - chemistry</topic><topic>Proteins</topic><topic>Solvents - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funakoshi, Kei</creatorcontrib><creatorcontrib>Suzuki, Hiroaki</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funakoshi, Kei</au><au>Suzuki, Hiroaki</au><au>Takeuchi, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2006-12-15</date><risdate>2006</risdate><volume>78</volume><issue>24</issue><spage>8169</spage><epage>8174</epage><pages>8169-8174</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17165804</pmid><doi>10.1021/ac0613479</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2006-12, Vol.78 (24), p.8169-8174
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_68248669
source MEDLINE; ACS Publications
subjects Analytical chemistry
Automation
Biosensing Techniques
Cellular biology
Chemistry
Electrochemistry
Exact sciences and technology
General, instrumentation
Ion Channels - analysis
Ion Channels - physiology
Lipid Bilayers - chemistry
Lipids
Membrane Proteins - analysis
Membrane Proteins - physiology
Membranes
Membranes, Artificial
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Organic Chemicals - chemistry
Proteins
Solvents - chemistry
Water - chemistry
title Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20Bilayer%20Formation%20by%20Contacting%20Monolayers%20in%20a%20Microfluidic%20Device%20for%20Membrane%20Protein%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Funakoshi,%20Kei&rft.date=2006-12-15&rft.volume=78&rft.issue=24&rft.spage=8169&rft.epage=8174&rft.pages=8169-8174&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac0613479&rft_dat=%3Cproquest_cross%3E1204604341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217887866&rft_id=info:pmid/17165804&rfr_iscdi=true