Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis
Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembl...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2006-12, Vol.78 (24), p.8169-8174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8174 |
---|---|
container_issue | 24 |
container_start_page | 8169 |
container_title | Analytical chemistry (Washington) |
container_volume | 78 |
creator | Funakoshi, Kei Suzuki, Hiroaki Takeuchi, Shoji |
description | Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies. |
doi_str_mv | 10.1021/ac0613479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68248669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1204604341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</originalsourceid><addsrcrecordid>eNpl0E9rFDEYBvAgit1WD34BCYIFD1Pf_M8c69ZtLbtYaD2HbCZTUmcm22RG3G9v6i5d0FMO-fHyPA9C7wicEaDks3UgCeOqfoFmRFCopNb0JZoBAKuoAjhCxzk_ABACRL5GR0QRKTTwGbpfhk1o8JfQ2a1PeBFTb8cQB7ze4nkcRuvGMNzjVRziX5FxGLDFq-BSbLspNMHhC_8rOI_bmPDK9-tkB49vUhx9oeeD7bY55DfoVWu77N_u3xP0Y_H1bn5VLb9ffpufLyvLFR-rWoiGO1uXpK4hnkkPtdCaq5Y3pKVCcS48A3C1opLJNW-YElTVxHJvBQd2gk53dzcpPk4-j6YP2fmuK6HilI3UlGsp6wI__AMf4pRK2mwoUVqrogr6tEOlbc7Jt2aTQm_T1hAwT9Ob5-mLfb8_OK173xzkfusCPu6Bzc52bdnJhXxwmknF4alCtXMhj_73879NP41Upa65u7k1t5xdLy5obdjhrnX5UOL_gH8A9fujqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217887866</pqid></control><display><type>article</type><title>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</title><source>MEDLINE</source><source>ACS Publications</source><creator>Funakoshi, Kei ; Suzuki, Hiroaki ; Takeuchi, Shoji</creator><creatorcontrib>Funakoshi, Kei ; Suzuki, Hiroaki ; Takeuchi, Shoji</creatorcontrib><description>Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac0613479</identifier><identifier>PMID: 17165804</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Automation ; Biosensing Techniques ; Cellular biology ; Chemistry ; Electrochemistry ; Exact sciences and technology ; General, instrumentation ; Ion Channels - analysis ; Ion Channels - physiology ; Lipid Bilayers - chemistry ; Lipids ; Membrane Proteins - analysis ; Membrane Proteins - physiology ; Membranes ; Membranes, Artificial ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Organic Chemicals - chemistry ; Proteins ; Solvents - chemistry ; Water - chemistry</subject><ispartof>Analytical chemistry (Washington), 2006-12, Vol.78 (24), p.8169-8174</ispartof><rights>Copyright © 2006 American Chemical Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Chemical Society Dec 15, 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</citedby><cites>FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac0613479$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac0613479$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18367400$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17165804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Funakoshi, Kei</creatorcontrib><creatorcontrib>Suzuki, Hiroaki</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><title>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.</description><subject>Analytical chemistry</subject><subject>Automation</subject><subject>Biosensing Techniques</subject><subject>Cellular biology</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><subject>Ion Channels - analysis</subject><subject>Ion Channels - physiology</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Proteins - analysis</subject><subject>Membrane Proteins - physiology</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Organic Chemicals - chemistry</subject><subject>Proteins</subject><subject>Solvents - chemistry</subject><subject>Water - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E9rFDEYBvAgit1WD34BCYIFD1Pf_M8c69ZtLbtYaD2HbCZTUmcm22RG3G9v6i5d0FMO-fHyPA9C7wicEaDks3UgCeOqfoFmRFCopNb0JZoBAKuoAjhCxzk_ABACRL5GR0QRKTTwGbpfhk1o8JfQ2a1PeBFTb8cQB7ze4nkcRuvGMNzjVRziX5FxGLDFq-BSbLspNMHhC_8rOI_bmPDK9-tkB49vUhx9oeeD7bY55DfoVWu77N_u3xP0Y_H1bn5VLb9ffpufLyvLFR-rWoiGO1uXpK4hnkkPtdCaq5Y3pKVCcS48A3C1opLJNW-YElTVxHJvBQd2gk53dzcpPk4-j6YP2fmuK6HilI3UlGsp6wI__AMf4pRK2mwoUVqrogr6tEOlbc7Jt2aTQm_T1hAwT9Ob5-mLfb8_OK173xzkfusCPu6Bzc52bdnJhXxwmknF4alCtXMhj_73879NP41Upa65u7k1t5xdLy5obdjhrnX5UOL_gH8A9fujqQ</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Funakoshi, Kei</creator><creator>Suzuki, Hiroaki</creator><creator>Takeuchi, Shoji</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061215</creationdate><title>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</title><author>Funakoshi, Kei ; Suzuki, Hiroaki ; Takeuchi, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-955d4ca9011cd1e36e0958847f4d1f257445e300c972636b4d3752791a4ea5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical chemistry</topic><topic>Automation</topic><topic>Biosensing Techniques</topic><topic>Cellular biology</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><topic>Ion Channels - analysis</topic><topic>Ion Channels - physiology</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Proteins - analysis</topic><topic>Membrane Proteins - physiology</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Organic Chemicals - chemistry</topic><topic>Proteins</topic><topic>Solvents - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funakoshi, Kei</creatorcontrib><creatorcontrib>Suzuki, Hiroaki</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funakoshi, Kei</au><au>Suzuki, Hiroaki</au><au>Takeuchi, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2006-12-15</date><risdate>2006</risdate><volume>78</volume><issue>24</issue><spage>8169</spage><epage>8174</epage><pages>8169-8174</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>17165804</pmid><doi>10.1021/ac0613479</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2006-12, Vol.78 (24), p.8169-8174 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_68248669 |
source | MEDLINE; ACS Publications |
subjects | Analytical chemistry Automation Biosensing Techniques Cellular biology Chemistry Electrochemistry Exact sciences and technology General, instrumentation Ion Channels - analysis Ion Channels - physiology Lipid Bilayers - chemistry Lipids Membrane Proteins - analysis Membrane Proteins - physiology Membranes Membranes, Artificial Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Organic Chemicals - chemistry Proteins Solvents - chemistry Water - chemistry |
title | Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lipid%20Bilayer%20Formation%20by%20Contacting%20Monolayers%20in%20a%20Microfluidic%20Device%20for%20Membrane%20Protein%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Funakoshi,%20Kei&rft.date=2006-12-15&rft.volume=78&rft.issue=24&rft.spage=8169&rft.epage=8174&rft.pages=8169-8174&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac0613479&rft_dat=%3Cproquest_cross%3E1204604341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217887866&rft_id=info:pmid/17165804&rfr_iscdi=true |