Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transfer

The dynamics of heterogeneous electron transfer (ET) from the polycyclic aromatic chromophore perylene to nanostructured TiO2 anatase was investigated for two different anchor groups with transient absorption spectroscopy in an ultrahigh vacuum. Data from ultraviolet photoelectron spectroscopy and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2006-12, Vol.110 (50), p.25383-25391
Hauptverfasser: Ernstorfer, Ralph, Gundlach, Lars, Felber, Silke, Storck, Winfried, Eichberger, Rainer, Willig, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25391
container_issue 50
container_start_page 25383
container_title The journal of physical chemistry. B
container_volume 110
creator Ernstorfer, Ralph
Gundlach, Lars
Felber, Silke
Storck, Winfried
Eichberger, Rainer
Willig, Frank
description The dynamics of heterogeneous electron transfer (ET) from the polycyclic aromatic chromophore perylene to nanostructured TiO2 anatase was investigated for two different anchor groups with transient absorption spectroscopy in an ultrahigh vacuum. Data from ultraviolet photoelectron spectroscopy and from linear absorption spectroscopy showed that the donor state of the chromophore was located around 900 meV above the lower edge of the conduction band. With the wide band limit fulfilled the rate of the heterogeneous ET reaction was only controlled by the strength of the electronic coupling and not reduced by Franck−Condon factors. Two different time constants for the electron transfer, i.e., 13 and 28 fs, were measured with carboxylic acid and phosphonic acid as the respective anchor groups. The difference in the ET time constants was explained with the different extension of the donor orbital onto the respective anchor group to reach the empty electronic states of the semiconductor. The time constants were extracted by means of a simple rate equation model. The validity of applying this model on this ultrafast time scale was verified by comparing the rate equation model with an optical Bloch equation model.
doi_str_mv 10.1021/jp064436y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68247938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68247938</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-3ccc162b67afa20fae1221d42adbfd5d8763202e5b0c283570855785e2bf6bcb3</originalsourceid><addsrcrecordid>eNpt0EFLwzAYBuAgipvTg39AelHwUE3SJumOY8ypbDq2CuIlpGmKnW1TkxbcvzfSOi8ewhd4H74PXgDOEbxBEKPbbQ1pGAZ0dwCGiGDou8cO-z9FkA7AibVbCDHBET0GA8QQJeOIDMHTWhfK05m3dFO2hTDepJLv2nhzo9vaenn1Gym_0f5GlbnUVdrKxpmZCxqjKy82orKZMqfgKBOFVWf9HIGXu1k8vfcXz_OH6WThixCxxg-klIjihDKRCQwzoRDGKA2xSJMsJWnEaIAhViSBEkcBYTAihEVE4SSjiUyCEbjq9tZGf7bKNrzMrVRFISqlW8tphEM2DiIHrzsojbbWqIzXJi-F2XEE-U95fF-esxf90jYpVfon-7Yc8DuQ20Z97XNhPjhlASM8Xm3463rzhparRx47f9l5IS3f6tZUrpN_Dn8DvPOFoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68247938</pqid></control><display><type>article</type><title>Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transfer</title><source>American Chemical Society Journals</source><creator>Ernstorfer, Ralph ; Gundlach, Lars ; Felber, Silke ; Storck, Winfried ; Eichberger, Rainer ; Willig, Frank</creator><creatorcontrib>Ernstorfer, Ralph ; Gundlach, Lars ; Felber, Silke ; Storck, Winfried ; Eichberger, Rainer ; Willig, Frank</creatorcontrib><description>The dynamics of heterogeneous electron transfer (ET) from the polycyclic aromatic chromophore perylene to nanostructured TiO2 anatase was investigated for two different anchor groups with transient absorption spectroscopy in an ultrahigh vacuum. Data from ultraviolet photoelectron spectroscopy and from linear absorption spectroscopy showed that the donor state of the chromophore was located around 900 meV above the lower edge of the conduction band. With the wide band limit fulfilled the rate of the heterogeneous ET reaction was only controlled by the strength of the electronic coupling and not reduced by Franck−Condon factors. Two different time constants for the electron transfer, i.e., 13 and 28 fs, were measured with carboxylic acid and phosphonic acid as the respective anchor groups. The difference in the ET time constants was explained with the different extension of the donor orbital onto the respective anchor group to reach the empty electronic states of the semiconductor. The time constants were extracted by means of a simple rate equation model. The validity of applying this model on this ultrafast time scale was verified by comparing the rate equation model with an optical Bloch equation model.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp064436y</identifier><identifier>PMID: 17165985</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2006-12, Vol.110 (50), p.25383-25391</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-3ccc162b67afa20fae1221d42adbfd5d8763202e5b0c283570855785e2bf6bcb3</citedby><cites>FETCH-LOGICAL-a417t-3ccc162b67afa20fae1221d42adbfd5d8763202e5b0c283570855785e2bf6bcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp064436y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp064436y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17165985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Gundlach, Lars</creatorcontrib><creatorcontrib>Felber, Silke</creatorcontrib><creatorcontrib>Storck, Winfried</creatorcontrib><creatorcontrib>Eichberger, Rainer</creatorcontrib><creatorcontrib>Willig, Frank</creatorcontrib><title>Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transfer</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The dynamics of heterogeneous electron transfer (ET) from the polycyclic aromatic chromophore perylene to nanostructured TiO2 anatase was investigated for two different anchor groups with transient absorption spectroscopy in an ultrahigh vacuum. Data from ultraviolet photoelectron spectroscopy and from linear absorption spectroscopy showed that the donor state of the chromophore was located around 900 meV above the lower edge of the conduction band. With the wide band limit fulfilled the rate of the heterogeneous ET reaction was only controlled by the strength of the electronic coupling and not reduced by Franck−Condon factors. Two different time constants for the electron transfer, i.e., 13 and 28 fs, were measured with carboxylic acid and phosphonic acid as the respective anchor groups. The difference in the ET time constants was explained with the different extension of the donor orbital onto the respective anchor group to reach the empty electronic states of the semiconductor. The time constants were extracted by means of a simple rate equation model. The validity of applying this model on this ultrafast time scale was verified by comparing the rate equation model with an optical Bloch equation model.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpt0EFLwzAYBuAgipvTg39AelHwUE3SJumOY8ypbDq2CuIlpGmKnW1TkxbcvzfSOi8ewhd4H74PXgDOEbxBEKPbbQ1pGAZ0dwCGiGDou8cO-z9FkA7AibVbCDHBET0GA8QQJeOIDMHTWhfK05m3dFO2hTDepJLv2nhzo9vaenn1Gym_0f5GlbnUVdrKxpmZCxqjKy82orKZMqfgKBOFVWf9HIGXu1k8vfcXz_OH6WThixCxxg-klIjihDKRCQwzoRDGKA2xSJMsJWnEaIAhViSBEkcBYTAihEVE4SSjiUyCEbjq9tZGf7bKNrzMrVRFISqlW8tphEM2DiIHrzsojbbWqIzXJi-F2XEE-U95fF-esxf90jYpVfon-7Yc8DuQ20Z97XNhPjhlASM8Xm3463rzhparRx47f9l5IS3f6tZUrpN_Dn8DvPOFoQ</recordid><startdate>20061221</startdate><enddate>20061221</enddate><creator>Ernstorfer, Ralph</creator><creator>Gundlach, Lars</creator><creator>Felber, Silke</creator><creator>Storck, Winfried</creator><creator>Eichberger, Rainer</creator><creator>Willig, Frank</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061221</creationdate><title>Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transfer</title><author>Ernstorfer, Ralph ; Gundlach, Lars ; Felber, Silke ; Storck, Winfried ; Eichberger, Rainer ; Willig, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-3ccc162b67afa20fae1221d42adbfd5d8763202e5b0c283570855785e2bf6bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Gundlach, Lars</creatorcontrib><creatorcontrib>Felber, Silke</creatorcontrib><creatorcontrib>Storck, Winfried</creatorcontrib><creatorcontrib>Eichberger, Rainer</creatorcontrib><creatorcontrib>Willig, Frank</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ernstorfer, Ralph</au><au>Gundlach, Lars</au><au>Felber, Silke</au><au>Storck, Winfried</au><au>Eichberger, Rainer</au><au>Willig, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transfer</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2006-12-21</date><risdate>2006</risdate><volume>110</volume><issue>50</issue><spage>25383</spage><epage>25391</epage><pages>25383-25391</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The dynamics of heterogeneous electron transfer (ET) from the polycyclic aromatic chromophore perylene to nanostructured TiO2 anatase was investigated for two different anchor groups with transient absorption spectroscopy in an ultrahigh vacuum. Data from ultraviolet photoelectron spectroscopy and from linear absorption spectroscopy showed that the donor state of the chromophore was located around 900 meV above the lower edge of the conduction band. With the wide band limit fulfilled the rate of the heterogeneous ET reaction was only controlled by the strength of the electronic coupling and not reduced by Franck−Condon factors. Two different time constants for the electron transfer, i.e., 13 and 28 fs, were measured with carboxylic acid and phosphonic acid as the respective anchor groups. The difference in the ET time constants was explained with the different extension of the donor orbital onto the respective anchor group to reach the empty electronic states of the semiconductor. The time constants were extracted by means of a simple rate equation model. The validity of applying this model on this ultrafast time scale was verified by comparing the rate equation model with an optical Bloch equation model.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17165985</pmid><doi>10.1021/jp064436y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2006-12, Vol.110 (50), p.25383-25391
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_68247938
source American Chemical Society Journals
title Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Molecular%20Anchor%20Groups%20in%20Molecule-to-Semiconductor%20Electron%20Transfer&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Ernstorfer,%20Ralph&rft.date=2006-12-21&rft.volume=110&rft.issue=50&rft.spage=25383&rft.epage=25391&rft.pages=25383-25391&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp064436y&rft_dat=%3Cproquest_cross%3E68247938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68247938&rft_id=info:pmid/17165985&rfr_iscdi=true