Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent

Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2007-09, Vol.293 (3), p.G591-G598
Hauptverfasser: Parvadia, Jignesh K, Keswani, Sundeep G, Vaikunth, Sachin, Maldonado, Arturo R, Marwan, A, Stehr, Wolfgang, Erwin, Christopher, Uzvolgyi, Eva, Warner, Brad W, Yamano, Seichii, Taichman, Norton, Crombleholme, Timothy M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page G598
container_issue 3
container_start_page G591
container_title American journal of physiology: Gastrointestinal and liver physiology
container_volume 293
creator Parvadia, Jignesh K
Keswani, Sundeep G
Vaikunth, Sachin
Maldonado, Arturo R
Marwan, A
Stehr, Wolfgang
Erwin, Christopher
Uzvolgyi, Eva
Warner, Brad W
Yamano, Seichii
Taichman, Norton
Crombleholme, Timothy M
description Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.
doi_str_mv 10.1152/ajpgi.00572.2006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68241262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68241262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</originalsourceid><addsrcrecordid>eNpdUU1Lw0AQXUTRWr17ksWDt9T9TFJvUtoqFARRr8smOxtTkt2YTRT_vUlbEDwNb-a9ecM8hK4omVEq2Z3eNkU5I0QmbMYIiY_QZGiziEqRHKMJoXMe0VQmZ-g8hC0ZiIzSU3RGE5lKQuUEFS--Auwtfl-uV7h0ONS6qnDmv6HC2uim013pHda2gxa3ECAf8T3uPmA_L79g7DfeBcBlwNoVpS_AQRiAgQacAdddoBOrqwCXhzpFb6vl6-Ix2jyvnxYPmyjnTHSRJNwkGWOcSWHmyZxKm2liGOdZZlNtbawTLakQWcqYMAnQXICZM24hjXNp-RTd7vc2rf_sIXSqLkMOVaUd-D6oOGWCspgNxJt_xK3vWzfcpkb3VIrBdIrInpS3PoQWrGrastbtj6JEjQmoXQJql4AaExgk14e9fVaD-RMcXs5_AYdggpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232585423</pqid></control><display><type>article</type><title>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Parvadia, Jignesh K ; Keswani, Sundeep G ; Vaikunth, Sachin ; Maldonado, Arturo R ; Marwan, A ; Stehr, Wolfgang ; Erwin, Christopher ; Uzvolgyi, Eva ; Warner, Brad W ; Yamano, Seichii ; Taichman, Norton ; Crombleholme, Timothy M</creator><creatorcontrib>Parvadia, Jignesh K ; Keswani, Sundeep G ; Vaikunth, Sachin ; Maldonado, Arturo R ; Marwan, A ; Stehr, Wolfgang ; Erwin, Christopher ; Uzvolgyi, Eva ; Warner, Brad W ; Yamano, Seichii ; Taichman, Norton ; Crombleholme, Timothy M</creatorcontrib><description>Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.</description><identifier>ISSN: 0193-1857</identifier><identifier>EISSN: 1522-1547</identifier><identifier>DOI: 10.1152/ajpgi.00572.2006</identifier><identifier>PMID: 17585015</identifier><identifier>CODEN: APGPDF</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adaptation, Physiological ; Adenoviridae - genetics ; Animals ; Cell Proliferation ; Endocrine system ; Epidermal Growth Factor - metabolism ; Excretory system ; Female ; Gene Transfer Techniques ; Genetic Vectors ; Ileum - blood supply ; Ileum - metabolism ; Ileum - physiopathology ; Ileum - surgery ; Intestinal Mucosa - metabolism ; Intestinal Mucosa - pathology ; Intestinal Mucosa - physiopathology ; Intestinal Mucosa - surgery ; Mice ; Mice, Inbred C57BL ; Microvilli - metabolism ; Microvilli - pathology ; Models, Animal ; Neovascularization, Physiologic ; Proteins ; Receptors, Vascular Endothelial Growth Factor - genetics ; Receptors, Vascular Endothelial Growth Factor - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Rodents ; Salivary Glands - metabolism ; Salivary Glands - surgery ; Time Factors ; Vascular Endothelial Growth Factor A - blood ; Vascular Endothelial Growth Factor A - metabolism ; Wound healing</subject><ispartof>American journal of physiology: Gastrointestinal and liver physiology, 2007-09, Vol.293 (3), p.G591-G598</ispartof><rights>Copyright American Physiological Society Sep 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</citedby><cites>FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3040,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17585015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parvadia, Jignesh K</creatorcontrib><creatorcontrib>Keswani, Sundeep G</creatorcontrib><creatorcontrib>Vaikunth, Sachin</creatorcontrib><creatorcontrib>Maldonado, Arturo R</creatorcontrib><creatorcontrib>Marwan, A</creatorcontrib><creatorcontrib>Stehr, Wolfgang</creatorcontrib><creatorcontrib>Erwin, Christopher</creatorcontrib><creatorcontrib>Uzvolgyi, Eva</creatorcontrib><creatorcontrib>Warner, Brad W</creatorcontrib><creatorcontrib>Yamano, Seichii</creatorcontrib><creatorcontrib>Taichman, Norton</creatorcontrib><creatorcontrib>Crombleholme, Timothy M</creatorcontrib><title>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</title><title>American journal of physiology: Gastrointestinal and liver physiology</title><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><description>Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.</description><subject>Adaptation, Physiological</subject><subject>Adenoviridae - genetics</subject><subject>Animals</subject><subject>Cell Proliferation</subject><subject>Endocrine system</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Excretory system</subject><subject>Female</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Vectors</subject><subject>Ileum - blood supply</subject><subject>Ileum - metabolism</subject><subject>Ileum - physiopathology</subject><subject>Ileum - surgery</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestinal Mucosa - pathology</subject><subject>Intestinal Mucosa - physiopathology</subject><subject>Intestinal Mucosa - surgery</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microvilli - metabolism</subject><subject>Microvilli - pathology</subject><subject>Models, Animal</subject><subject>Neovascularization, Physiologic</subject><subject>Proteins</subject><subject>Receptors, Vascular Endothelial Growth Factor - genetics</subject><subject>Receptors, Vascular Endothelial Growth Factor - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Rodents</subject><subject>Salivary Glands - metabolism</subject><subject>Salivary Glands - surgery</subject><subject>Time Factors</subject><subject>Vascular Endothelial Growth Factor A - blood</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wound healing</subject><issn>0193-1857</issn><issn>1522-1547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU1Lw0AQXUTRWr17ksWDt9T9TFJvUtoqFARRr8smOxtTkt2YTRT_vUlbEDwNb-a9ecM8hK4omVEq2Z3eNkU5I0QmbMYIiY_QZGiziEqRHKMJoXMe0VQmZ-g8hC0ZiIzSU3RGE5lKQuUEFS--Auwtfl-uV7h0ONS6qnDmv6HC2uim013pHda2gxa3ECAf8T3uPmA_L79g7DfeBcBlwNoVpS_AQRiAgQacAdddoBOrqwCXhzpFb6vl6-Ix2jyvnxYPmyjnTHSRJNwkGWOcSWHmyZxKm2liGOdZZlNtbawTLakQWcqYMAnQXICZM24hjXNp-RTd7vc2rf_sIXSqLkMOVaUd-D6oOGWCspgNxJt_xK3vWzfcpkb3VIrBdIrInpS3PoQWrGrastbtj6JEjQmoXQJql4AaExgk14e9fVaD-RMcXs5_AYdggpE</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Parvadia, Jignesh K</creator><creator>Keswani, Sundeep G</creator><creator>Vaikunth, Sachin</creator><creator>Maldonado, Arturo R</creator><creator>Marwan, A</creator><creator>Stehr, Wolfgang</creator><creator>Erwin, Christopher</creator><creator>Uzvolgyi, Eva</creator><creator>Warner, Brad W</creator><creator>Yamano, Seichii</creator><creator>Taichman, Norton</creator><creator>Crombleholme, Timothy M</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</title><author>Parvadia, Jignesh K ; Keswani, Sundeep G ; Vaikunth, Sachin ; Maldonado, Arturo R ; Marwan, A ; Stehr, Wolfgang ; Erwin, Christopher ; Uzvolgyi, Eva ; Warner, Brad W ; Yamano, Seichii ; Taichman, Norton ; Crombleholme, Timothy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptation, Physiological</topic><topic>Adenoviridae - genetics</topic><topic>Animals</topic><topic>Cell Proliferation</topic><topic>Endocrine system</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Excretory system</topic><topic>Female</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Vectors</topic><topic>Ileum - blood supply</topic><topic>Ileum - metabolism</topic><topic>Ileum - physiopathology</topic><topic>Ileum - surgery</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestinal Mucosa - pathology</topic><topic>Intestinal Mucosa - physiopathology</topic><topic>Intestinal Mucosa - surgery</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microvilli - metabolism</topic><topic>Microvilli - pathology</topic><topic>Models, Animal</topic><topic>Neovascularization, Physiologic</topic><topic>Proteins</topic><topic>Receptors, Vascular Endothelial Growth Factor - genetics</topic><topic>Receptors, Vascular Endothelial Growth Factor - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Rodents</topic><topic>Salivary Glands - metabolism</topic><topic>Salivary Glands - surgery</topic><topic>Time Factors</topic><topic>Vascular Endothelial Growth Factor A - blood</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvadia, Jignesh K</creatorcontrib><creatorcontrib>Keswani, Sundeep G</creatorcontrib><creatorcontrib>Vaikunth, Sachin</creatorcontrib><creatorcontrib>Maldonado, Arturo R</creatorcontrib><creatorcontrib>Marwan, A</creatorcontrib><creatorcontrib>Stehr, Wolfgang</creatorcontrib><creatorcontrib>Erwin, Christopher</creatorcontrib><creatorcontrib>Uzvolgyi, Eva</creatorcontrib><creatorcontrib>Warner, Brad W</creatorcontrib><creatorcontrib>Yamano, Seichii</creatorcontrib><creatorcontrib>Taichman, Norton</creatorcontrib><creatorcontrib>Crombleholme, Timothy M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvadia, Jignesh K</au><au>Keswani, Sundeep G</au><au>Vaikunth, Sachin</au><au>Maldonado, Arturo R</au><au>Marwan, A</au><au>Stehr, Wolfgang</au><au>Erwin, Christopher</au><au>Uzvolgyi, Eva</au><au>Warner, Brad W</au><au>Yamano, Seichii</au><au>Taichman, Norton</au><au>Crombleholme, Timothy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</atitle><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><date>2007-09</date><risdate>2007</risdate><volume>293</volume><issue>3</issue><spage>G591</spage><epage>G598</epage><pages>G591-G598</pages><issn>0193-1857</issn><eissn>1522-1547</eissn><coden>APGPDF</coden><abstract>Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>17585015</pmid><doi>10.1152/ajpgi.00572.2006</doi></addata></record>
fulltext fulltext
identifier ISSN: 0193-1857
ispartof American journal of physiology: Gastrointestinal and liver physiology, 2007-09, Vol.293 (3), p.G591-G598
issn 0193-1857
1522-1547
language eng
recordid cdi_proquest_miscellaneous_68241262
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals
subjects Adaptation, Physiological
Adenoviridae - genetics
Animals
Cell Proliferation
Endocrine system
Epidermal Growth Factor - metabolism
Excretory system
Female
Gene Transfer Techniques
Genetic Vectors
Ileum - blood supply
Ileum - metabolism
Ileum - physiopathology
Ileum - surgery
Intestinal Mucosa - metabolism
Intestinal Mucosa - pathology
Intestinal Mucosa - physiopathology
Intestinal Mucosa - surgery
Mice
Mice, Inbred C57BL
Microvilli - metabolism
Microvilli - pathology
Models, Animal
Neovascularization, Physiologic
Proteins
Receptors, Vascular Endothelial Growth Factor - genetics
Receptors, Vascular Endothelial Growth Factor - metabolism
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Rodents
Salivary Glands - metabolism
Salivary Glands - surgery
Time Factors
Vascular Endothelial Growth Factor A - blood
Vascular Endothelial Growth Factor A - metabolism
Wound healing
title Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20VEGF%20in%20small%20bowel%20adaptation%20after%20resection:%20the%20adaptive%20response%20is%20angiogenesis%20dependent&rft.jtitle=American%20journal%20of%20physiology:%20Gastrointestinal%20and%20liver%20physiology&rft.au=Parvadia,%20Jignesh%20K&rft.date=2007-09&rft.volume=293&rft.issue=3&rft.spage=G591&rft.epage=G598&rft.pages=G591-G598&rft.issn=0193-1857&rft.eissn=1522-1547&rft.coden=APGPDF&rft_id=info:doi/10.1152/ajpgi.00572.2006&rft_dat=%3Cproquest_cross%3E68241262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232585423&rft_id=info:pmid/17585015&rfr_iscdi=true