Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent
Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the inte...
Gespeichert in:
Veröffentlicht in: | American journal of physiology: Gastrointestinal and liver physiology 2007-09, Vol.293 (3), p.G591-G598 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | G598 |
---|---|
container_issue | 3 |
container_start_page | G591 |
container_title | American journal of physiology: Gastrointestinal and liver physiology |
container_volume | 293 |
creator | Parvadia, Jignesh K Keswani, Sundeep G Vaikunth, Sachin Maldonado, Arturo R Marwan, A Stehr, Wolfgang Erwin, Christopher Uzvolgyi, Eva Warner, Brad W Yamano, Seichii Taichman, Norton Crombleholme, Timothy M |
description | Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response. |
doi_str_mv | 10.1152/ajpgi.00572.2006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68241262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68241262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</originalsourceid><addsrcrecordid>eNpdUU1Lw0AQXUTRWr17ksWDt9T9TFJvUtoqFARRr8smOxtTkt2YTRT_vUlbEDwNb-a9ecM8hK4omVEq2Z3eNkU5I0QmbMYIiY_QZGiziEqRHKMJoXMe0VQmZ-g8hC0ZiIzSU3RGE5lKQuUEFS--Auwtfl-uV7h0ONS6qnDmv6HC2uim013pHda2gxa3ECAf8T3uPmA_L79g7DfeBcBlwNoVpS_AQRiAgQacAdddoBOrqwCXhzpFb6vl6-Ix2jyvnxYPmyjnTHSRJNwkGWOcSWHmyZxKm2liGOdZZlNtbawTLakQWcqYMAnQXICZM24hjXNp-RTd7vc2rf_sIXSqLkMOVaUd-D6oOGWCspgNxJt_xK3vWzfcpkb3VIrBdIrInpS3PoQWrGrastbtj6JEjQmoXQJql4AaExgk14e9fVaD-RMcXs5_AYdggpE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232585423</pqid></control><display><type>article</type><title>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Parvadia, Jignesh K ; Keswani, Sundeep G ; Vaikunth, Sachin ; Maldonado, Arturo R ; Marwan, A ; Stehr, Wolfgang ; Erwin, Christopher ; Uzvolgyi, Eva ; Warner, Brad W ; Yamano, Seichii ; Taichman, Norton ; Crombleholme, Timothy M</creator><creatorcontrib>Parvadia, Jignesh K ; Keswani, Sundeep G ; Vaikunth, Sachin ; Maldonado, Arturo R ; Marwan, A ; Stehr, Wolfgang ; Erwin, Christopher ; Uzvolgyi, Eva ; Warner, Brad W ; Yamano, Seichii ; Taichman, Norton ; Crombleholme, Timothy M</creatorcontrib><description>Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.</description><identifier>ISSN: 0193-1857</identifier><identifier>EISSN: 1522-1547</identifier><identifier>DOI: 10.1152/ajpgi.00572.2006</identifier><identifier>PMID: 17585015</identifier><identifier>CODEN: APGPDF</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adaptation, Physiological ; Adenoviridae - genetics ; Animals ; Cell Proliferation ; Endocrine system ; Epidermal Growth Factor - metabolism ; Excretory system ; Female ; Gene Transfer Techniques ; Genetic Vectors ; Ileum - blood supply ; Ileum - metabolism ; Ileum - physiopathology ; Ileum - surgery ; Intestinal Mucosa - metabolism ; Intestinal Mucosa - pathology ; Intestinal Mucosa - physiopathology ; Intestinal Mucosa - surgery ; Mice ; Mice, Inbred C57BL ; Microvilli - metabolism ; Microvilli - pathology ; Models, Animal ; Neovascularization, Physiologic ; Proteins ; Receptors, Vascular Endothelial Growth Factor - genetics ; Receptors, Vascular Endothelial Growth Factor - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Rodents ; Salivary Glands - metabolism ; Salivary Glands - surgery ; Time Factors ; Vascular Endothelial Growth Factor A - blood ; Vascular Endothelial Growth Factor A - metabolism ; Wound healing</subject><ispartof>American journal of physiology: Gastrointestinal and liver physiology, 2007-09, Vol.293 (3), p.G591-G598</ispartof><rights>Copyright American Physiological Society Sep 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</citedby><cites>FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3040,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17585015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parvadia, Jignesh K</creatorcontrib><creatorcontrib>Keswani, Sundeep G</creatorcontrib><creatorcontrib>Vaikunth, Sachin</creatorcontrib><creatorcontrib>Maldonado, Arturo R</creatorcontrib><creatorcontrib>Marwan, A</creatorcontrib><creatorcontrib>Stehr, Wolfgang</creatorcontrib><creatorcontrib>Erwin, Christopher</creatorcontrib><creatorcontrib>Uzvolgyi, Eva</creatorcontrib><creatorcontrib>Warner, Brad W</creatorcontrib><creatorcontrib>Yamano, Seichii</creatorcontrib><creatorcontrib>Taichman, Norton</creatorcontrib><creatorcontrib>Crombleholme, Timothy M</creatorcontrib><title>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</title><title>American journal of physiology: Gastrointestinal and liver physiology</title><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><description>Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.</description><subject>Adaptation, Physiological</subject><subject>Adenoviridae - genetics</subject><subject>Animals</subject><subject>Cell Proliferation</subject><subject>Endocrine system</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Excretory system</subject><subject>Female</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Vectors</subject><subject>Ileum - blood supply</subject><subject>Ileum - metabolism</subject><subject>Ileum - physiopathology</subject><subject>Ileum - surgery</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestinal Mucosa - pathology</subject><subject>Intestinal Mucosa - physiopathology</subject><subject>Intestinal Mucosa - surgery</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microvilli - metabolism</subject><subject>Microvilli - pathology</subject><subject>Models, Animal</subject><subject>Neovascularization, Physiologic</subject><subject>Proteins</subject><subject>Receptors, Vascular Endothelial Growth Factor - genetics</subject><subject>Receptors, Vascular Endothelial Growth Factor - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Rodents</subject><subject>Salivary Glands - metabolism</subject><subject>Salivary Glands - surgery</subject><subject>Time Factors</subject><subject>Vascular Endothelial Growth Factor A - blood</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Wound healing</subject><issn>0193-1857</issn><issn>1522-1547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU1Lw0AQXUTRWr17ksWDt9T9TFJvUtoqFARRr8smOxtTkt2YTRT_vUlbEDwNb-a9ecM8hK4omVEq2Z3eNkU5I0QmbMYIiY_QZGiziEqRHKMJoXMe0VQmZ-g8hC0ZiIzSU3RGE5lKQuUEFS--Auwtfl-uV7h0ONS6qnDmv6HC2uim013pHda2gxa3ECAf8T3uPmA_L79g7DfeBcBlwNoVpS_AQRiAgQacAdddoBOrqwCXhzpFb6vl6-Ix2jyvnxYPmyjnTHSRJNwkGWOcSWHmyZxKm2liGOdZZlNtbawTLakQWcqYMAnQXICZM24hjXNp-RTd7vc2rf_sIXSqLkMOVaUd-D6oOGWCspgNxJt_xK3vWzfcpkb3VIrBdIrInpS3PoQWrGrastbtj6JEjQmoXQJql4AaExgk14e9fVaD-RMcXs5_AYdggpE</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Parvadia, Jignesh K</creator><creator>Keswani, Sundeep G</creator><creator>Vaikunth, Sachin</creator><creator>Maldonado, Arturo R</creator><creator>Marwan, A</creator><creator>Stehr, Wolfgang</creator><creator>Erwin, Christopher</creator><creator>Uzvolgyi, Eva</creator><creator>Warner, Brad W</creator><creator>Yamano, Seichii</creator><creator>Taichman, Norton</creator><creator>Crombleholme, Timothy M</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</title><author>Parvadia, Jignesh K ; Keswani, Sundeep G ; Vaikunth, Sachin ; Maldonado, Arturo R ; Marwan, A ; Stehr, Wolfgang ; Erwin, Christopher ; Uzvolgyi, Eva ; Warner, Brad W ; Yamano, Seichii ; Taichman, Norton ; Crombleholme, Timothy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-503d7b223254d97915fba0d233bbf8aff6a7a5144b8224d7e1c4ed923fe86c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptation, Physiological</topic><topic>Adenoviridae - genetics</topic><topic>Animals</topic><topic>Cell Proliferation</topic><topic>Endocrine system</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Excretory system</topic><topic>Female</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Vectors</topic><topic>Ileum - blood supply</topic><topic>Ileum - metabolism</topic><topic>Ileum - physiopathology</topic><topic>Ileum - surgery</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestinal Mucosa - pathology</topic><topic>Intestinal Mucosa - physiopathology</topic><topic>Intestinal Mucosa - surgery</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microvilli - metabolism</topic><topic>Microvilli - pathology</topic><topic>Models, Animal</topic><topic>Neovascularization, Physiologic</topic><topic>Proteins</topic><topic>Receptors, Vascular Endothelial Growth Factor - genetics</topic><topic>Receptors, Vascular Endothelial Growth Factor - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Rodents</topic><topic>Salivary Glands - metabolism</topic><topic>Salivary Glands - surgery</topic><topic>Time Factors</topic><topic>Vascular Endothelial Growth Factor A - blood</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvadia, Jignesh K</creatorcontrib><creatorcontrib>Keswani, Sundeep G</creatorcontrib><creatorcontrib>Vaikunth, Sachin</creatorcontrib><creatorcontrib>Maldonado, Arturo R</creatorcontrib><creatorcontrib>Marwan, A</creatorcontrib><creatorcontrib>Stehr, Wolfgang</creatorcontrib><creatorcontrib>Erwin, Christopher</creatorcontrib><creatorcontrib>Uzvolgyi, Eva</creatorcontrib><creatorcontrib>Warner, Brad W</creatorcontrib><creatorcontrib>Yamano, Seichii</creatorcontrib><creatorcontrib>Taichman, Norton</creatorcontrib><creatorcontrib>Crombleholme, Timothy M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvadia, Jignesh K</au><au>Keswani, Sundeep G</au><au>Vaikunth, Sachin</au><au>Maldonado, Arturo R</au><au>Marwan, A</au><au>Stehr, Wolfgang</au><au>Erwin, Christopher</au><au>Uzvolgyi, Eva</au><au>Warner, Brad W</au><au>Yamano, Seichii</au><au>Taichman, Norton</au><au>Crombleholme, Timothy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent</atitle><jtitle>American journal of physiology: Gastrointestinal and liver physiology</jtitle><addtitle>Am J Physiol Gastrointest Liver Physiol</addtitle><date>2007-09</date><risdate>2007</risdate><volume>293</volume><issue>3</issue><spage>G591</spage><epage>G598</epage><pages>G591-G598</pages><issn>0193-1857</issn><eissn>1522-1547</eissn><coden>APGPDF</coden><abstract>Previous work in our group has demonstrated that mouse salivary gland has the highest concentration of salivary-derived VEGF protein compared with other organs and is essential for normal palatal mucosal wound healing. We hypothesize that salivary VEGF plays an important role in maintaining the integrity of the gastrointestinal mucosa following small bowel resection (SBR). Thirty-five 8- to 10-wk-old C57BL/6 female mice were divided into seven treatment groups: 1) sham (transaction and anastomosis, n = 5); 2) SBR (n = 8); 3) sialoadenectomy and small bowel resection (SAL+SBR, n = 8); 4) sialoadenectomy and small bowel resection with EGF supplementation (SAL+SBR+EGF, n = 9); 5) sialoadenectomy and small bowel resection with VEGF supplementation (SAL+SBR+VEGF, n = 9); 6) sialoadenectomy and small bowel resection supplemented with EGF and VEGF (SAL+ SBR+VEGF+EGF, n = 6); 7) selective inhibition of VEGF in the submandibular gland by Ad-VEGF-Trap following small bowel resection (Ad-VEGF-Trap+SBR, n = 7). Adaptation was after 3 days by ileal villus height and crypt depth. The microvascular response was evaluated by CD31 immunostaining and for villus-vessel area ratio by FITC-labeled von Willebrand factor immunostaining. The adaptive response after SBR was significantly attenuated in the SAL group in terms of villus height (250.4 +/- 8.816 vs. 310 +/- 19.35, P = 0.01) and crypt depth (100.021 +/- 4.025 vs. 120.541 +/- 2.82, P = 0.01). This response was partially corrected by orogastric VEGF or EGF alone. The adaptive response was completely restored when both were administered together, suggesting that salivary VEGF and EGF both contribute to intestinal adaptation. VEGF increases the vascular density (6.4 +/- 0.29 vs. 6.1 +/- 0.29 vs. 5.96 +/- 0.20) and villus-vessel area ratio (0.713 +/- 0.01 vs. 0.73 +/- 0.01) in the adapting bowel. Supplementation of both EGF and VEGF fully rescues adaptation, suggesting that the adaptive response may be dependent on VEGF-driven angiogenesis. These results support a previously unrecognized role for VEGF in the small bowel adaptive response.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>17585015</pmid><doi>10.1152/ajpgi.00572.2006</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0193-1857 |
ispartof | American journal of physiology: Gastrointestinal and liver physiology, 2007-09, Vol.293 (3), p.G591-G598 |
issn | 0193-1857 1522-1547 |
language | eng |
recordid | cdi_proquest_miscellaneous_68241262 |
source | MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals |
subjects | Adaptation, Physiological Adenoviridae - genetics Animals Cell Proliferation Endocrine system Epidermal Growth Factor - metabolism Excretory system Female Gene Transfer Techniques Genetic Vectors Ileum - blood supply Ileum - metabolism Ileum - physiopathology Ileum - surgery Intestinal Mucosa - metabolism Intestinal Mucosa - pathology Intestinal Mucosa - physiopathology Intestinal Mucosa - surgery Mice Mice, Inbred C57BL Microvilli - metabolism Microvilli - pathology Models, Animal Neovascularization, Physiologic Proteins Receptors, Vascular Endothelial Growth Factor - genetics Receptors, Vascular Endothelial Growth Factor - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Rodents Salivary Glands - metabolism Salivary Glands - surgery Time Factors Vascular Endothelial Growth Factor A - blood Vascular Endothelial Growth Factor A - metabolism Wound healing |
title | Role of VEGF in small bowel adaptation after resection: the adaptive response is angiogenesis dependent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20VEGF%20in%20small%20bowel%20adaptation%20after%20resection:%20the%20adaptive%20response%20is%20angiogenesis%20dependent&rft.jtitle=American%20journal%20of%20physiology:%20Gastrointestinal%20and%20liver%20physiology&rft.au=Parvadia,%20Jignesh%20K&rft.date=2007-09&rft.volume=293&rft.issue=3&rft.spage=G591&rft.epage=G598&rft.pages=G591-G598&rft.issn=0193-1857&rft.eissn=1522-1547&rft.coden=APGPDF&rft_id=info:doi/10.1152/ajpgi.00572.2006&rft_dat=%3Cproquest_cross%3E68241262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232585423&rft_id=info:pmid/17585015&rfr_iscdi=true |