Bringing Electrons and Microarray Technology Together

Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2007-09, Vol.111 (36), p.10636-10638
Hauptverfasser: Solomun, T, Sturm, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10638
container_issue 36
container_start_page 10636
container_title The journal of physical chemistry. B
container_volume 111
creator Solomun, T
Sturm, H
description Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability of DNA to hybridize (i.e., to form the duplex). Specifically, single-stranded thymine DNA oligomers tethered to a gold surface are irradiated with very low-energy electrons (E = 3 eV, which is below the 7.5 eV ionization threshold of DNA) and subsequently exposed to a dye-marked complementary strand to quantify by a fluorescence method the electron induced damage. The damage to (dT)25 oligomers is detected at quite low electron doses with only about 300 electrons per oligomer being sufficient to completely preclude its hybridization. In the microarray format, the method can be used for a rapid screening of the sequence dependence of the DNA−electron interaction. We also show for the first time that the DNA reactions at surfaces can be imaged by secondary electron (SE) emission with both high analytical and spatial sensitivity. The SE micrographs indicate that strand breaks induced by the electrons play a significant role in the reaction mechanism.
doi_str_mv 10.1021/jp075338v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68241045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68241045</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-48c8e5138bd991b884ef09a8b71a22aa2a2dbcc5196c6df2c1a2cb886ddd03503</originalsourceid><addsrcrecordid>eNpt0E1LwzAYB_AgipvTg19AelHwUM1Lk6ZHN7YpTBSsegxpkm6dXTuTVty3N9IyL0JCHpIfzxP-AJwjeIMgRrfrLYwpIfzrAAwRxTD0Oz7sa4YgG4AT59YQYoo5OwYDFMcIEUKGgI5tUS39CqalUY2tKxfISgePhbK1tFbugtSoVVWX9dKX9dI0K2NPwVEuS2fO-nMEXmfTdHIfLp7mD5O7RSgJRU0YccUNRYRnOklQxnlkcphInsVIYiwlllhnSlGUMMV0jpW_Vp4xrTUkFJIRuOr6bm392RrXiE3hlClLWZm6dYJxHCEYUQ-vO-h_7Zw1udjaYiPtTiAofjMS-4y8veibttnG6D_Zh-JB2IHCNeZ7_y7th2AxialIn1_EW4pm7wkZi7n3l52Xyol13drKZ_LP4B8-kHxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68241045</pqid></control><display><type>article</type><title>Bringing Electrons and Microarray Technology Together</title><source>ACS Publications</source><source>MEDLINE</source><creator>Solomun, T ; Sturm, H</creator><creatorcontrib>Solomun, T ; Sturm, H</creatorcontrib><description>Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability of DNA to hybridize (i.e., to form the duplex). Specifically, single-stranded thymine DNA oligomers tethered to a gold surface are irradiated with very low-energy electrons (E = 3 eV, which is below the 7.5 eV ionization threshold of DNA) and subsequently exposed to a dye-marked complementary strand to quantify by a fluorescence method the electron induced damage. The damage to (dT)25 oligomers is detected at quite low electron doses with only about 300 electrons per oligomer being sufficient to completely preclude its hybridization. In the microarray format, the method can be used for a rapid screening of the sequence dependence of the DNA−electron interaction. We also show for the first time that the DNA reactions at surfaces can be imaged by secondary electron (SE) emission with both high analytical and spatial sensitivity. The SE micrographs indicate that strand breaks induced by the electrons play a significant role in the reaction mechanism.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp075338v</identifier><identifier>PMID: 17711333</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - chemistry ; DNA - radiation effects ; DNA Damage ; Electrons ; Fluorescence ; Gold - chemistry ; Nucleic Acid Hybridization ; Oligonucleotide Array Sequence Analysis - methods ; Sensitivity and Specificity ; Surface Properties</subject><ispartof>The journal of physical chemistry. B, 2007-09, Vol.111 (36), p.10636-10638</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-48c8e5138bd991b884ef09a8b71a22aa2a2dbcc5196c6df2c1a2cb886ddd03503</citedby><cites>FETCH-LOGICAL-a351t-48c8e5138bd991b884ef09a8b71a22aa2a2dbcc5196c6df2c1a2cb886ddd03503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp075338v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp075338v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17711333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Solomun, T</creatorcontrib><creatorcontrib>Sturm, H</creatorcontrib><title>Bringing Electrons and Microarray Technology Together</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability of DNA to hybridize (i.e., to form the duplex). Specifically, single-stranded thymine DNA oligomers tethered to a gold surface are irradiated with very low-energy electrons (E = 3 eV, which is below the 7.5 eV ionization threshold of DNA) and subsequently exposed to a dye-marked complementary strand to quantify by a fluorescence method the electron induced damage. The damage to (dT)25 oligomers is detected at quite low electron doses with only about 300 electrons per oligomer being sufficient to completely preclude its hybridization. In the microarray format, the method can be used for a rapid screening of the sequence dependence of the DNA−electron interaction. We also show for the first time that the DNA reactions at surfaces can be imaged by secondary electron (SE) emission with both high analytical and spatial sensitivity. The SE micrographs indicate that strand breaks induced by the electrons play a significant role in the reaction mechanism.</description><subject>DNA - chemistry</subject><subject>DNA - radiation effects</subject><subject>DNA Damage</subject><subject>Electrons</subject><subject>Fluorescence</subject><subject>Gold - chemistry</subject><subject>Nucleic Acid Hybridization</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Sensitivity and Specificity</subject><subject>Surface Properties</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LwzAYB_AgipvTg19AelHwUM1Lk6ZHN7YpTBSsegxpkm6dXTuTVty3N9IyL0JCHpIfzxP-AJwjeIMgRrfrLYwpIfzrAAwRxTD0Oz7sa4YgG4AT59YQYoo5OwYDFMcIEUKGgI5tUS39CqalUY2tKxfISgePhbK1tFbugtSoVVWX9dKX9dI0K2NPwVEuS2fO-nMEXmfTdHIfLp7mD5O7RSgJRU0YccUNRYRnOklQxnlkcphInsVIYiwlllhnSlGUMMV0jpW_Vp4xrTUkFJIRuOr6bm392RrXiE3hlClLWZm6dYJxHCEYUQ-vO-h_7Zw1udjaYiPtTiAofjMS-4y8veibttnG6D_Zh-JB2IHCNeZ7_y7th2AxialIn1_EW4pm7wkZi7n3l52Xyol13drKZ_LP4B8-kHxY</recordid><startdate>20070913</startdate><enddate>20070913</enddate><creator>Solomun, T</creator><creator>Sturm, H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070913</creationdate><title>Bringing Electrons and Microarray Technology Together</title><author>Solomun, T ; Sturm, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-48c8e5138bd991b884ef09a8b71a22aa2a2dbcc5196c6df2c1a2cb886ddd03503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>DNA - chemistry</topic><topic>DNA - radiation effects</topic><topic>DNA Damage</topic><topic>Electrons</topic><topic>Fluorescence</topic><topic>Gold - chemistry</topic><topic>Nucleic Acid Hybridization</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Sensitivity and Specificity</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solomun, T</creatorcontrib><creatorcontrib>Sturm, H</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solomun, T</au><au>Sturm, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bringing Electrons and Microarray Technology Together</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2007-09-13</date><risdate>2007</risdate><volume>111</volume><issue>36</issue><spage>10636</spage><epage>10638</epage><pages>10636-10638</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Low-energy secondary electrons are the most abundant radiolysis species which are thought to be able to attach to and damage DNA via formation and decay of localized molecular resonances involving DNA components. In this study, we analyze the consequences of low-energy electron impact on the ability of DNA to hybridize (i.e., to form the duplex). Specifically, single-stranded thymine DNA oligomers tethered to a gold surface are irradiated with very low-energy electrons (E = 3 eV, which is below the 7.5 eV ionization threshold of DNA) and subsequently exposed to a dye-marked complementary strand to quantify by a fluorescence method the electron induced damage. The damage to (dT)25 oligomers is detected at quite low electron doses with only about 300 electrons per oligomer being sufficient to completely preclude its hybridization. In the microarray format, the method can be used for a rapid screening of the sequence dependence of the DNA−electron interaction. We also show for the first time that the DNA reactions at surfaces can be imaged by secondary electron (SE) emission with both high analytical and spatial sensitivity. The SE micrographs indicate that strand breaks induced by the electrons play a significant role in the reaction mechanism.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17711333</pmid><doi>10.1021/jp075338v</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2007-09, Vol.111 (36), p.10636-10638
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_68241045
source ACS Publications; MEDLINE
subjects DNA - chemistry
DNA - radiation effects
DNA Damage
Electrons
Fluorescence
Gold - chemistry
Nucleic Acid Hybridization
Oligonucleotide Array Sequence Analysis - methods
Sensitivity and Specificity
Surface Properties
title Bringing Electrons and Microarray Technology Together
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bringing%20Electrons%20and%20Microarray%20Technology%20Together&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Solomun,%20T&rft.date=2007-09-13&rft.volume=111&rft.issue=36&rft.spage=10636&rft.epage=10638&rft.pages=10636-10638&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp075338v&rft_dat=%3Cproquest_cross%3E68241045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68241045&rft_id=info:pmid/17711333&rfr_iscdi=true