Resolving the Coupled Effects of Hydrodynamics and DLVO Forces on Colloid Attachment in Porous Media
Transport of colloidal particles in porous media is governed by the rate at which the colloids strike and stick to collector surfaces. Classic filtration theory has considered the influence of system hydrodynamics on determining the rate at which colloids strike collector surfaces, but has neglected...
Gespeichert in:
Veröffentlicht in: | Langmuir 2007-09, Vol.23 (19), p.9652-9660 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transport of colloidal particles in porous media is governed by the rate at which the colloids strike and stick to collector surfaces. Classic filtration theory has considered the influence of system hydrodynamics on determining the rate at which colloids strike collector surfaces, but has neglected the influence of hydrodynamic forces in the calculation of the collision efficiency. Computational simulations based on the sphere-in-cell model were conducted that considered the influence of hydrodynamic and Derjaguin−Landau−Verwey−Overbeek (DLVO) forces on colloid attachment to collectors of various shape and size. Our analysis indicated that hydrodynamic and DLVO forces and collector shape and size significantly influenced the colloid collision efficiency. Colloid attachment was only possible on regions of the collector where the torque from hydrodynamic shear acting on colloids adjacent to collector surfaces was less than the adhesive (DLVO) torque that resists detachment. The fraction of the collector surface area on which attachment was possible increased with solution ionic strength, collector size, and decreasing flow velocity. Simulations demonstrated that quantitative evaluation of colloid transport through porous media will require nontraditional approaches that account for hydrodynamic and DLVO forces as well as collector shape and size. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/la700995e |