Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebrates
Of the four classes of vertebrate cone visual pigments, the shortwave‐sensitive SWS1 class shows some of the largest shifts in λmax, with values ranging in different species from 390–435 nm in the violet region of the spectrum to
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2007-03, Vol.83 (2), p.303-310 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | 2 |
container_start_page | 303 |
container_title | Photochemistry and photobiology |
container_volume | 83 |
creator | Hunt, David M. Carvalho, Lívia S. Cowing, Jill A. Parry, Juliet W. L. Wilkie, Susan E. Davies, Wayne L. Bowmaker, James K. |
description | Of the four classes of vertebrate cone visual pigments, the shortwave‐sensitive SWS1 class shows some of the largest shifts in λmax, with values ranging in different species from 390–435 nm in the violet region of the spectrum to |
doi_str_mv | 10.1562/2006-06-27-IR-952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68230771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68230771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4776-34f4c1bcc9ae885aa3336bcc181ed89bdeef2432275d80e3a68ea73ee907977c3</originalsourceid><addsrcrecordid>eNpdkNtKAzEQhoMoWg8P4I0sXngXzWGT2b0UabVStdSqlyHdTjW63a3Jroe3N1oPIAwMw3z_MHyE7HJ2yJUWR4IxTWMJoP0RzZVYIR0OilPOclglHcYkp5lWaoNshvDIGE9z4OtkI0KgZao7pHu9wKLxtkzGbeWq-6SeJdcPtW9e7QvSgFVwjXvB5NaFNkJDdz_HqgmJq5Jb9A1OvG0wbJO1mS0D7nz3LXLT645Pzujg6rR_cjygRQqgqUxnacEnRZFbzDJlrZRSx5FnHKdZPpkizkQqhQA1zRhKqzO0IBFzBjlAIbfIwfLuwtfPLYbGzF0osCxthXUbjM6EZAA8gvv_wMe69VX8zQgJQnKpWYT2vqF2MsepWXg3t_7d_NiJgFoCr67E9789M5_6zad-E0uA6Y9M1G-GZ0P2laPLnAsNvv3mrH8yGiQoc3d5as7F-fiiN-qZgfwAdgKF6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237231360</pqid></control><display><type>article</type><title>Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebrates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hunt, David M. ; Carvalho, Lívia S. ; Cowing, Jill A. ; Parry, Juliet W. L. ; Wilkie, Susan E. ; Davies, Wayne L. ; Bowmaker, James K.</creator><creatorcontrib>Hunt, David M. ; Carvalho, Lívia S. ; Cowing, Jill A. ; Parry, Juliet W. L. ; Wilkie, Susan E. ; Davies, Wayne L. ; Bowmaker, James K.</creatorcontrib><description>Of the four classes of vertebrate cone visual pigments, the shortwave‐sensitive SWS1 class shows some of the largest shifts in λmax, with values ranging in different species from 390–435 nm in the violet region of the spectrum to <360 nm in the ultraviolet. Phylogenetic evidence indicates that the ancestral pigment most probably had a λmax in the UV and that shifts between violet and UV have occurred many times during evolution. In violet‐sensitive (VS) pigments, the Schiff base is protonated whereas in UV‐sensitive (UVS) pigments, it is almost certainly unprotonated. The generation of VS pigments in amphibia, birds and mammals from ancestral UVS pigments must involve therefore the stabilization of protonation. Similarly, stabilization must be lost in the evolution of avian UVS pigments from a VS ancestral pigment. The key residues in the opsin protein for these shifts are at sites 86 and 90, both adjacent to the Schiff base and the counterion at Glu113. In this review, the various molecular mechanisms for the UV and violet shifts in the different vertebrate groups are presented and the changes in the opsin protein that are responsible for the spectral shifts are discussed in the context of the structural model of bovine rhodopsin.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1562/2006-06-27-IR-952</identifier><identifier>PMID: 17576346</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amino Acid Substitution ; Animals ; Dolphins & porpoises ; Evolution, Molecular ; Eyes & eyesight ; Models, Molecular ; Mutation ; Photochemistry ; Pigments ; Proteins ; Protons ; Reptiles & amphibians ; Retinal Pigments - chemistry ; Retinal Pigments - genetics ; Retinal Pigments - radiation effects ; Schiff Bases - chemistry ; Schiff Bases - radiation effects ; Ultraviolet Rays ; Vertebrates</subject><ispartof>Photochemistry and photobiology, 2007-03, Vol.83 (2), p.303-310</ispartof><rights>Copyright American Society for Photobiology Mar/Apr 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4776-34f4c1bcc9ae885aa3336bcc181ed89bdeef2432275d80e3a68ea73ee907977c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1562%2F2006-06-27-IR-952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1562%2F2006-06-27-IR-952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17576346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunt, David M.</creatorcontrib><creatorcontrib>Carvalho, Lívia S.</creatorcontrib><creatorcontrib>Cowing, Jill A.</creatorcontrib><creatorcontrib>Parry, Juliet W. L.</creatorcontrib><creatorcontrib>Wilkie, Susan E.</creatorcontrib><creatorcontrib>Davies, Wayne L.</creatorcontrib><creatorcontrib>Bowmaker, James K.</creatorcontrib><title>Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebrates</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Of the four classes of vertebrate cone visual pigments, the shortwave‐sensitive SWS1 class shows some of the largest shifts in λmax, with values ranging in different species from 390–435 nm in the violet region of the spectrum to <360 nm in the ultraviolet. Phylogenetic evidence indicates that the ancestral pigment most probably had a λmax in the UV and that shifts between violet and UV have occurred many times during evolution. In violet‐sensitive (VS) pigments, the Schiff base is protonated whereas in UV‐sensitive (UVS) pigments, it is almost certainly unprotonated. The generation of VS pigments in amphibia, birds and mammals from ancestral UVS pigments must involve therefore the stabilization of protonation. Similarly, stabilization must be lost in the evolution of avian UVS pigments from a VS ancestral pigment. The key residues in the opsin protein for these shifts are at sites 86 and 90, both adjacent to the Schiff base and the counterion at Glu113. In this review, the various molecular mechanisms for the UV and violet shifts in the different vertebrate groups are presented and the changes in the opsin protein that are responsible for the spectral shifts are discussed in the context of the structural model of bovine rhodopsin.</description><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Dolphins & porpoises</subject><subject>Evolution, Molecular</subject><subject>Eyes & eyesight</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Photochemistry</subject><subject>Pigments</subject><subject>Proteins</subject><subject>Protons</subject><subject>Reptiles & amphibians</subject><subject>Retinal Pigments - chemistry</subject><subject>Retinal Pigments - genetics</subject><subject>Retinal Pigments - radiation effects</subject><subject>Schiff Bases - chemistry</subject><subject>Schiff Bases - radiation effects</subject><subject>Ultraviolet Rays</subject><subject>Vertebrates</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkNtKAzEQhoMoWg8P4I0sXngXzWGT2b0UabVStdSqlyHdTjW63a3Jroe3N1oPIAwMw3z_MHyE7HJ2yJUWR4IxTWMJoP0RzZVYIR0OilPOclglHcYkp5lWaoNshvDIGE9z4OtkI0KgZao7pHu9wKLxtkzGbeWq-6SeJdcPtW9e7QvSgFVwjXvB5NaFNkJDdz_HqgmJq5Jb9A1OvG0wbJO1mS0D7nz3LXLT645Pzujg6rR_cjygRQqgqUxnacEnRZFbzDJlrZRSx5FnHKdZPpkizkQqhQA1zRhKqzO0IBFzBjlAIbfIwfLuwtfPLYbGzF0osCxthXUbjM6EZAA8gvv_wMe69VX8zQgJQnKpWYT2vqF2MsepWXg3t_7d_NiJgFoCr67E9789M5_6zad-E0uA6Y9M1G-GZ0P2laPLnAsNvv3mrH8yGiQoc3d5as7F-fiiN-qZgfwAdgKF6Q</recordid><startdate>200703</startdate><enddate>200703</enddate><creator>Hunt, David M.</creator><creator>Carvalho, Lívia S.</creator><creator>Cowing, Jill A.</creator><creator>Parry, Juliet W. L.</creator><creator>Wilkie, Susan E.</creator><creator>Davies, Wayne L.</creator><creator>Bowmaker, James K.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>200703</creationdate><title>Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebrates</title><author>Hunt, David M. ; Carvalho, Lívia S. ; Cowing, Jill A. ; Parry, Juliet W. L. ; Wilkie, Susan E. ; Davies, Wayne L. ; Bowmaker, James K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4776-34f4c1bcc9ae885aa3336bcc181ed89bdeef2432275d80e3a68ea73ee907977c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Dolphins & porpoises</topic><topic>Evolution, Molecular</topic><topic>Eyes & eyesight</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Photochemistry</topic><topic>Pigments</topic><topic>Proteins</topic><topic>Protons</topic><topic>Reptiles & amphibians</topic><topic>Retinal Pigments - chemistry</topic><topic>Retinal Pigments - genetics</topic><topic>Retinal Pigments - radiation effects</topic><topic>Schiff Bases - chemistry</topic><topic>Schiff Bases - radiation effects</topic><topic>Ultraviolet Rays</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, David M.</creatorcontrib><creatorcontrib>Carvalho, Lívia S.</creatorcontrib><creatorcontrib>Cowing, Jill A.</creatorcontrib><creatorcontrib>Parry, Juliet W. L.</creatorcontrib><creatorcontrib>Wilkie, Susan E.</creatorcontrib><creatorcontrib>Davies, Wayne L.</creatorcontrib><creatorcontrib>Bowmaker, James K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing & Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, David M.</au><au>Carvalho, Lívia S.</au><au>Cowing, Jill A.</au><au>Parry, Juliet W. L.</au><au>Wilkie, Susan E.</au><au>Davies, Wayne L.</au><au>Bowmaker, James K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebrates</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2007-03</date><risdate>2007</risdate><volume>83</volume><issue>2</issue><spage>303</spage><epage>310</epage><pages>303-310</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>Of the four classes of vertebrate cone visual pigments, the shortwave‐sensitive SWS1 class shows some of the largest shifts in λmax, with values ranging in different species from 390–435 nm in the violet region of the spectrum to <360 nm in the ultraviolet. Phylogenetic evidence indicates that the ancestral pigment most probably had a λmax in the UV and that shifts between violet and UV have occurred many times during evolution. In violet‐sensitive (VS) pigments, the Schiff base is protonated whereas in UV‐sensitive (UVS) pigments, it is almost certainly unprotonated. The generation of VS pigments in amphibia, birds and mammals from ancestral UVS pigments must involve therefore the stabilization of protonation. Similarly, stabilization must be lost in the evolution of avian UVS pigments from a VS ancestral pigment. The key residues in the opsin protein for these shifts are at sites 86 and 90, both adjacent to the Schiff base and the counterion at Glu113. In this review, the various molecular mechanisms for the UV and violet shifts in the different vertebrate groups are presented and the changes in the opsin protein that are responsible for the spectral shifts are discussed in the context of the structural model of bovine rhodopsin.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>17576346</pmid><doi>10.1562/2006-06-27-IR-952</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2007-03, Vol.83 (2), p.303-310 |
issn | 0031-8655 1751-1097 |
language | eng |
recordid | cdi_proquest_miscellaneous_68230771 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amino Acid Substitution Animals Dolphins & porpoises Evolution, Molecular Eyes & eyesight Models, Molecular Mutation Photochemistry Pigments Proteins Protons Reptiles & amphibians Retinal Pigments - chemistry Retinal Pigments - genetics Retinal Pigments - radiation effects Schiff Bases - chemistry Schiff Bases - radiation effects Ultraviolet Rays Vertebrates |
title | Spectral Tuning of Shortwave-sensitive Visual Pigments in Vertebrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Tuning%20of%20Shortwave-sensitive%20Visual%20Pigments%20in%20Vertebrates&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Hunt,%20David%20M.&rft.date=2007-03&rft.volume=83&rft.issue=2&rft.spage=303&rft.epage=310&rft.pages=303-310&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1562/2006-06-27-IR-952&rft_dat=%3Cproquest_pubme%3E68230771%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237231360&rft_id=info:pmid/17576346&rfr_iscdi=true |