Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions

Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2006-12, Vol.142 (4), p.1759-1770
Hauptverfasser: Mattoo, Autar K., Sobolev, Anatoli P., Neelam, Anil, Goyal, Ravinder K., Handa, Avtar K., Segre, Anna L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1770
container_issue 4
container_start_page 1759
container_title Plant physiology (Bethesda)
container_volume 142
creator Mattoo, Autar K.
Sobolev, Anatoli P.
Neelam, Anil
Goyal, Ravinder K.
Handa, Avtar K.
Segre, Anna L.
description Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.
doi_str_mv 10.1104/pp.106.084400
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68228615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20206057</jstor_id><sourcerecordid>20206057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEokvhyBHkC9yyjBM7zl6QllULldqCynKOHGeydZW1g-1U6iPyVkx3Vy2cevLY880_M57Jsrcc5pyD-DSOcw7VHGohAJ5lMy7LIi-kqJ9nMwCyoa4XR9mrGG8AgJdcvMyOuALBoRSz7M_lZAbUgV3ojcNkDbvC6J12BtnPEU0KPho_3uVfdMSOXWDSrR9sQvYj-N4O1m2Y79k6aBc36Ch-7bc6eXYaJpvYidtYhxgolN6WxkzbadBppx22tiMn0647XOlyhbeoh0iB1_c1dGzpdgnNDru0VA-lyVc6tN6xM5cwaJOsd_F19qKnSHxzOI-zX6cn69W3_Pz717PV8jw3FRQp70TboSqLQpailVy0SolOFFxiD1KpuuOVqmXZAiyExqqUXctVV4nalIUxEsvj7PNed5zaLXYGXQp6aMZgtzrcNV7b5n-Ps9fNxt82JFyBrEng40Eg-N8TxtRsbTQ4DNqhn2JT1UVRVzTHp0Ch5EJB9bQiX0iS45zAfA8aGmsM2D-UzaG5X6dmHMmsmv06Ef_-314f6cP-EPDhAOho9NDTGhgbH7m6pKYrRdy7PXcTkw8P_gIKoD9R5V9LfeDc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19515311</pqid></control><display><type>article</type><title>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Mattoo, Autar K. ; Sobolev, Anatoli P. ; Neelam, Anil ; Goyal, Ravinder K. ; Handa, Avtar K. ; Segre, Anna L.</creator><creatorcontrib>Mattoo, Autar K. ; Sobolev, Anatoli P. ; Neelam, Anil ; Goyal, Ravinder K. ; Handa, Avtar K. ; Segre, Anna L.</creatorcontrib><description>Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.106.084400</identifier><identifier>PMID: 17041034</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; amino acids ; Amino Acids - metabolism ; Biological and medical sciences ; Carbohydrate Metabolism ; Carbon ; Carbon - metabolism ; Cellular metabolism ; chemistry ; choline ; Choline - metabolism ; Citrates ; Economic plant physiology ; Fructification, ripening. Postharvest physiology ; Fruit ; Fruit - chemistry ; Fruit - genetics ; Fruit - metabolism ; fruiting ; Fruits ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Expression Regulation, Plant ; genetics ; Growth and development ; isocitrate dehydrogenase ; Isocitrate Dehydrogenase - genetics ; Isocitrate Dehydrogenase - metabolism ; Lycopersicon esculentum ; Metabolism ; Metabolites ; Nitrogen ; Nitrogen - metabolism ; nuclear magnetic resonance spectroscopy ; Nuclear Magnetic Resonance, Biomolecular ; organic acids and salts ; phosphoenolpyruvate carboxykinase (ATP) ; Phosphoenolpyruvate Carboxylase ; Phosphoenolpyruvate Carboxylase - genetics ; Phosphoenolpyruvate Carboxylase - metabolism ; Plants ; Plants, Genetically Modified ; Plants, Genetically Modified - chemistry ; Plants, Genetically Modified - metabolism ; Polyamines ; Ripening ; RNA, Messenger ; RNA, Messenger - metabolism ; Signal Transduction ; Solanum ; Solanum lycopersicum ; Solanum lycopersicum - genetics ; Solanum lycopersicum var. lycopersicum ; spectral analysis ; spermidine ; Spermidine - metabolism ; spermine ; Spermine - metabolism ; Systems Biology, Molecular Biology, and Gene Regulation ; Tomatoes ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2006-12, Vol.142 (4), p.1759-1770</ispartof><rights>Copyright 2006 American Society of Plant Biologists</rights><rights>2007 INIST-CNRS</rights><rights>Copyright © 2006, American Society of Plant Biologists 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</citedby><cites>FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20206057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20206057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18367667$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17041034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattoo, Autar K.</creatorcontrib><creatorcontrib>Sobolev, Anatoli P.</creatorcontrib><creatorcontrib>Neelam, Anil</creatorcontrib><creatorcontrib>Goyal, Ravinder K.</creatorcontrib><creatorcontrib>Handa, Avtar K.</creatorcontrib><creatorcontrib>Segre, Anna L.</creatorcontrib><title>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.</description><subject>Agronomy. Soil science and plant productions</subject><subject>amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carbohydrate Metabolism</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cellular metabolism</subject><subject>chemistry</subject><subject>choline</subject><subject>Choline - metabolism</subject><subject>Citrates</subject><subject>Economic plant physiology</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fruit</subject><subject>Fruit - chemistry</subject><subject>Fruit - genetics</subject><subject>Fruit - metabolism</subject><subject>fruiting</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genetics</subject><subject>Growth and development</subject><subject>isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - genetics</subject><subject>Isocitrate Dehydrogenase - metabolism</subject><subject>Lycopersicon esculentum</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>organic acids and salts</subject><subject>phosphoenolpyruvate carboxykinase (ATP)</subject><subject>Phosphoenolpyruvate Carboxylase</subject><subject>Phosphoenolpyruvate Carboxylase - genetics</subject><subject>Phosphoenolpyruvate Carboxylase - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plants, Genetically Modified - chemistry</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Polyamines</subject><subject>Ripening</subject><subject>RNA, Messenger</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction</subject><subject>Solanum</subject><subject>Solanum lycopersicum</subject><subject>Solanum lycopersicum - genetics</subject><subject>Solanum lycopersicum var. lycopersicum</subject><subject>spectral analysis</subject><subject>spermidine</subject><subject>Spermidine - metabolism</subject><subject>spermine</subject><subject>Spermine - metabolism</subject><subject>Systems Biology, Molecular Biology, and Gene Regulation</subject><subject>Tomatoes</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhiMEokvhyBHkC9yyjBM7zl6QllULldqCynKOHGeydZW1g-1U6iPyVkx3Vy2cevLY880_M57Jsrcc5pyD-DSOcw7VHGohAJ5lMy7LIi-kqJ9nMwCyoa4XR9mrGG8AgJdcvMyOuALBoRSz7M_lZAbUgV3ojcNkDbvC6J12BtnPEU0KPho_3uVfdMSOXWDSrR9sQvYj-N4O1m2Y79k6aBc36Ch-7bc6eXYaJpvYidtYhxgolN6WxkzbadBppx22tiMn0647XOlyhbeoh0iB1_c1dGzpdgnNDru0VA-lyVc6tN6xM5cwaJOsd_F19qKnSHxzOI-zX6cn69W3_Pz717PV8jw3FRQp70TboSqLQpailVy0SolOFFxiD1KpuuOVqmXZAiyExqqUXctVV4nalIUxEsvj7PNed5zaLXYGXQp6aMZgtzrcNV7b5n-Ps9fNxt82JFyBrEng40Eg-N8TxtRsbTQ4DNqhn2JT1UVRVzTHp0Ch5EJB9bQiX0iS45zAfA8aGmsM2D-UzaG5X6dmHMmsmv06Ef_-314f6cP-EPDhAOho9NDTGhgbH7m6pKYrRdy7PXcTkw8P_gIKoD9R5V9LfeDc</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Mattoo, Autar K.</creator><creator>Sobolev, Anatoli P.</creator><creator>Neelam, Anil</creator><creator>Goyal, Ravinder K.</creator><creator>Handa, Avtar K.</creator><creator>Segre, Anna L.</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061201</creationdate><title>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</title><author>Mattoo, Autar K. ; Sobolev, Anatoli P. ; Neelam, Anil ; Goyal, Ravinder K. ; Handa, Avtar K. ; Segre, Anna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carbohydrate Metabolism</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cellular metabolism</topic><topic>chemistry</topic><topic>choline</topic><topic>Choline - metabolism</topic><topic>Citrates</topic><topic>Economic plant physiology</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fruit</topic><topic>Fruit - chemistry</topic><topic>Fruit - genetics</topic><topic>Fruit - metabolism</topic><topic>fruiting</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genetics</topic><topic>Growth and development</topic><topic>isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - genetics</topic><topic>Isocitrate Dehydrogenase - metabolism</topic><topic>Lycopersicon esculentum</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>organic acids and salts</topic><topic>phosphoenolpyruvate carboxykinase (ATP)</topic><topic>Phosphoenolpyruvate Carboxylase</topic><topic>Phosphoenolpyruvate Carboxylase - genetics</topic><topic>Phosphoenolpyruvate Carboxylase - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plants, Genetically Modified - chemistry</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Polyamines</topic><topic>Ripening</topic><topic>RNA, Messenger</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction</topic><topic>Solanum</topic><topic>Solanum lycopersicum</topic><topic>Solanum lycopersicum - genetics</topic><topic>Solanum lycopersicum var. lycopersicum</topic><topic>spectral analysis</topic><topic>spermidine</topic><topic>Spermidine - metabolism</topic><topic>spermine</topic><topic>Spermine - metabolism</topic><topic>Systems Biology, Molecular Biology, and Gene Regulation</topic><topic>Tomatoes</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattoo, Autar K.</creatorcontrib><creatorcontrib>Sobolev, Anatoli P.</creatorcontrib><creatorcontrib>Neelam, Anil</creatorcontrib><creatorcontrib>Goyal, Ravinder K.</creatorcontrib><creatorcontrib>Handa, Avtar K.</creatorcontrib><creatorcontrib>Segre, Anna L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattoo, Autar K.</au><au>Sobolev, Anatoli P.</au><au>Neelam, Anil</au><au>Goyal, Ravinder K.</au><au>Handa, Avtar K.</au><au>Segre, Anna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>142</volume><issue>4</issue><spage>1759</spage><epage>1770</epage><pages>1759-1770</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>17041034</pmid><doi>10.1104/pp.106.084400</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2006-12, Vol.142 (4), p.1759-1770
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_68228615
source Jstor Complete Legacy; Oxford University Press Journals; MEDLINE; EZB Electronic Journals Library
subjects Agronomy. Soil science and plant productions
amino acids
Amino Acids - metabolism
Biological and medical sciences
Carbohydrate Metabolism
Carbon
Carbon - metabolism
Cellular metabolism
chemistry
choline
Choline - metabolism
Citrates
Economic plant physiology
Fructification, ripening. Postharvest physiology
Fruit
Fruit - chemistry
Fruit - genetics
Fruit - metabolism
fruiting
Fruits
Fundamental and applied biological sciences. Psychology
gene expression regulation
Gene Expression Regulation, Plant
genetics
Growth and development
isocitrate dehydrogenase
Isocitrate Dehydrogenase - genetics
Isocitrate Dehydrogenase - metabolism
Lycopersicon esculentum
Metabolism
Metabolites
Nitrogen
Nitrogen - metabolism
nuclear magnetic resonance spectroscopy
Nuclear Magnetic Resonance, Biomolecular
organic acids and salts
phosphoenolpyruvate carboxykinase (ATP)
Phosphoenolpyruvate Carboxylase
Phosphoenolpyruvate Carboxylase - genetics
Phosphoenolpyruvate Carboxylase - metabolism
Plants
Plants, Genetically Modified
Plants, Genetically Modified - chemistry
Plants, Genetically Modified - metabolism
Polyamines
Ripening
RNA, Messenger
RNA, Messenger - metabolism
Signal Transduction
Solanum
Solanum lycopersicum
Solanum lycopersicum - genetics
Solanum lycopersicum var. lycopersicum
spectral analysis
spermidine
Spermidine - metabolism
spermine
Spermine - metabolism
Systems Biology, Molecular Biology, and Gene Regulation
Tomatoes
Transgenic plants
title Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Magnetic%20Resonance%20Spectroscopy-Based%20Metabolite%20Profiling%20of%20Transgenic%20Tomato%20Fruit%20Engineered%20to%20Accumulate%20Spermidine%20and%20Spermine%20Reveals%20Enhanced%20Anabolic%20and%20Nitrogen-Carbon%20Interactions&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Mattoo,%20Autar%20K.&rft.date=2006-12-01&rft.volume=142&rft.issue=4&rft.spage=1759&rft.epage=1770&rft.pages=1759-1770&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.106.084400&rft_dat=%3Cjstor_pubme%3E20206057%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19515311&rft_id=info:pmid/17041034&rft_jstor_id=20206057&rfr_iscdi=true