Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions
Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines s...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2006-12, Vol.142 (4), p.1759-1770 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1770 |
---|---|
container_issue | 4 |
container_start_page | 1759 |
container_title | Plant physiology (Bethesda) |
container_volume | 142 |
creator | Mattoo, Autar K. Sobolev, Anatoli P. Neelam, Anil Goyal, Ravinder K. Handa, Avtar K. Segre, Anna L. |
description | Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening. |
doi_str_mv | 10.1104/pp.106.084400 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68228615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20206057</jstor_id><sourcerecordid>20206057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEokvhyBHkC9yyjBM7zl6QllULldqCynKOHGeydZW1g-1U6iPyVkx3Vy2cevLY880_M57Jsrcc5pyD-DSOcw7VHGohAJ5lMy7LIi-kqJ9nMwCyoa4XR9mrGG8AgJdcvMyOuALBoRSz7M_lZAbUgV3ojcNkDbvC6J12BtnPEU0KPho_3uVfdMSOXWDSrR9sQvYj-N4O1m2Y79k6aBc36Ch-7bc6eXYaJpvYidtYhxgolN6WxkzbadBppx22tiMn0647XOlyhbeoh0iB1_c1dGzpdgnNDru0VA-lyVc6tN6xM5cwaJOsd_F19qKnSHxzOI-zX6cn69W3_Pz717PV8jw3FRQp70TboSqLQpailVy0SolOFFxiD1KpuuOVqmXZAiyExqqUXctVV4nalIUxEsvj7PNed5zaLXYGXQp6aMZgtzrcNV7b5n-Ps9fNxt82JFyBrEng40Eg-N8TxtRsbTQ4DNqhn2JT1UVRVzTHp0Ch5EJB9bQiX0iS45zAfA8aGmsM2D-UzaG5X6dmHMmsmv06Ef_-314f6cP-EPDhAOho9NDTGhgbH7m6pKYrRdy7PXcTkw8P_gIKoD9R5V9LfeDc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19515311</pqid></control><display><type>article</type><title>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Mattoo, Autar K. ; Sobolev, Anatoli P. ; Neelam, Anil ; Goyal, Ravinder K. ; Handa, Avtar K. ; Segre, Anna L.</creator><creatorcontrib>Mattoo, Autar K. ; Sobolev, Anatoli P. ; Neelam, Anil ; Goyal, Ravinder K. ; Handa, Avtar K. ; Segre, Anna L.</creatorcontrib><description>Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.106.084400</identifier><identifier>PMID: 17041034</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; amino acids ; Amino Acids - metabolism ; Biological and medical sciences ; Carbohydrate Metabolism ; Carbon ; Carbon - metabolism ; Cellular metabolism ; chemistry ; choline ; Choline - metabolism ; Citrates ; Economic plant physiology ; Fructification, ripening. Postharvest physiology ; Fruit ; Fruit - chemistry ; Fruit - genetics ; Fruit - metabolism ; fruiting ; Fruits ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Expression Regulation, Plant ; genetics ; Growth and development ; isocitrate dehydrogenase ; Isocitrate Dehydrogenase - genetics ; Isocitrate Dehydrogenase - metabolism ; Lycopersicon esculentum ; Metabolism ; Metabolites ; Nitrogen ; Nitrogen - metabolism ; nuclear magnetic resonance spectroscopy ; Nuclear Magnetic Resonance, Biomolecular ; organic acids and salts ; phosphoenolpyruvate carboxykinase (ATP) ; Phosphoenolpyruvate Carboxylase ; Phosphoenolpyruvate Carboxylase - genetics ; Phosphoenolpyruvate Carboxylase - metabolism ; Plants ; Plants, Genetically Modified ; Plants, Genetically Modified - chemistry ; Plants, Genetically Modified - metabolism ; Polyamines ; Ripening ; RNA, Messenger ; RNA, Messenger - metabolism ; Signal Transduction ; Solanum ; Solanum lycopersicum ; Solanum lycopersicum - genetics ; Solanum lycopersicum var. lycopersicum ; spectral analysis ; spermidine ; Spermidine - metabolism ; spermine ; Spermine - metabolism ; Systems Biology, Molecular Biology, and Gene Regulation ; Tomatoes ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2006-12, Vol.142 (4), p.1759-1770</ispartof><rights>Copyright 2006 American Society of Plant Biologists</rights><rights>2007 INIST-CNRS</rights><rights>Copyright © 2006, American Society of Plant Biologists 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</citedby><cites>FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20206057$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20206057$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18367667$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17041034$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattoo, Autar K.</creatorcontrib><creatorcontrib>Sobolev, Anatoli P.</creatorcontrib><creatorcontrib>Neelam, Anil</creatorcontrib><creatorcontrib>Goyal, Ravinder K.</creatorcontrib><creatorcontrib>Handa, Avtar K.</creatorcontrib><creatorcontrib>Segre, Anna L.</creatorcontrib><title>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.</description><subject>Agronomy. Soil science and plant productions</subject><subject>amino acids</subject><subject>Amino Acids - metabolism</subject><subject>Biological and medical sciences</subject><subject>Carbohydrate Metabolism</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cellular metabolism</subject><subject>chemistry</subject><subject>choline</subject><subject>Choline - metabolism</subject><subject>Citrates</subject><subject>Economic plant physiology</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fruit</subject><subject>Fruit - chemistry</subject><subject>Fruit - genetics</subject><subject>Fruit - metabolism</subject><subject>fruiting</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>genetics</subject><subject>Growth and development</subject><subject>isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - genetics</subject><subject>Isocitrate Dehydrogenase - metabolism</subject><subject>Lycopersicon esculentum</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Nitrogen</subject><subject>Nitrogen - metabolism</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>organic acids and salts</subject><subject>phosphoenolpyruvate carboxykinase (ATP)</subject><subject>Phosphoenolpyruvate Carboxylase</subject><subject>Phosphoenolpyruvate Carboxylase - genetics</subject><subject>Phosphoenolpyruvate Carboxylase - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Plants, Genetically Modified - chemistry</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Polyamines</subject><subject>Ripening</subject><subject>RNA, Messenger</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction</subject><subject>Solanum</subject><subject>Solanum lycopersicum</subject><subject>Solanum lycopersicum - genetics</subject><subject>Solanum lycopersicum var. lycopersicum</subject><subject>spectral analysis</subject><subject>spermidine</subject><subject>Spermidine - metabolism</subject><subject>spermine</subject><subject>Spermine - metabolism</subject><subject>Systems Biology, Molecular Biology, and Gene Regulation</subject><subject>Tomatoes</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFksFu1DAQhiMEokvhyBHkC9yyjBM7zl6QllULldqCynKOHGeydZW1g-1U6iPyVkx3Vy2cevLY880_M57Jsrcc5pyD-DSOcw7VHGohAJ5lMy7LIi-kqJ9nMwCyoa4XR9mrGG8AgJdcvMyOuALBoRSz7M_lZAbUgV3ojcNkDbvC6J12BtnPEU0KPho_3uVfdMSOXWDSrR9sQvYj-N4O1m2Y79k6aBc36Ch-7bc6eXYaJpvYidtYhxgolN6WxkzbadBppx22tiMn0647XOlyhbeoh0iB1_c1dGzpdgnNDru0VA-lyVc6tN6xM5cwaJOsd_F19qKnSHxzOI-zX6cn69W3_Pz717PV8jw3FRQp70TboSqLQpailVy0SolOFFxiD1KpuuOVqmXZAiyExqqUXctVV4nalIUxEsvj7PNed5zaLXYGXQp6aMZgtzrcNV7b5n-Ps9fNxt82JFyBrEng40Eg-N8TxtRsbTQ4DNqhn2JT1UVRVzTHp0Ch5EJB9bQiX0iS45zAfA8aGmsM2D-UzaG5X6dmHMmsmv06Ef_-314f6cP-EPDhAOho9NDTGhgbH7m6pKYrRdy7PXcTkw8P_gIKoD9R5V9LfeDc</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Mattoo, Autar K.</creator><creator>Sobolev, Anatoli P.</creator><creator>Neelam, Anil</creator><creator>Goyal, Ravinder K.</creator><creator>Handa, Avtar K.</creator><creator>Segre, Anna L.</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061201</creationdate><title>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</title><author>Mattoo, Autar K. ; Sobolev, Anatoli P. ; Neelam, Anil ; Goyal, Ravinder K. ; Handa, Avtar K. ; Segre, Anna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-d4bde7322534b514b774d4215ef05778d167853b0094ae635db17d648c32cc5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>amino acids</topic><topic>Amino Acids - metabolism</topic><topic>Biological and medical sciences</topic><topic>Carbohydrate Metabolism</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cellular metabolism</topic><topic>chemistry</topic><topic>choline</topic><topic>Choline - metabolism</topic><topic>Citrates</topic><topic>Economic plant physiology</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fruit</topic><topic>Fruit - chemistry</topic><topic>Fruit - genetics</topic><topic>Fruit - metabolism</topic><topic>fruiting</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>genetics</topic><topic>Growth and development</topic><topic>isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - genetics</topic><topic>Isocitrate Dehydrogenase - metabolism</topic><topic>Lycopersicon esculentum</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Nitrogen</topic><topic>Nitrogen - metabolism</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>organic acids and salts</topic><topic>phosphoenolpyruvate carboxykinase (ATP)</topic><topic>Phosphoenolpyruvate Carboxylase</topic><topic>Phosphoenolpyruvate Carboxylase - genetics</topic><topic>Phosphoenolpyruvate Carboxylase - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Plants, Genetically Modified - chemistry</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Polyamines</topic><topic>Ripening</topic><topic>RNA, Messenger</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction</topic><topic>Solanum</topic><topic>Solanum lycopersicum</topic><topic>Solanum lycopersicum - genetics</topic><topic>Solanum lycopersicum var. lycopersicum</topic><topic>spectral analysis</topic><topic>spermidine</topic><topic>Spermidine - metabolism</topic><topic>spermine</topic><topic>Spermine - metabolism</topic><topic>Systems Biology, Molecular Biology, and Gene Regulation</topic><topic>Tomatoes</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattoo, Autar K.</creatorcontrib><creatorcontrib>Sobolev, Anatoli P.</creatorcontrib><creatorcontrib>Neelam, Anil</creatorcontrib><creatorcontrib>Goyal, Ravinder K.</creatorcontrib><creatorcontrib>Handa, Avtar K.</creatorcontrib><creatorcontrib>Segre, Anna L.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattoo, Autar K.</au><au>Sobolev, Anatoli P.</au><au>Neelam, Anil</au><au>Goyal, Ravinder K.</au><au>Handa, Avtar K.</au><au>Segre, Anna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>142</volume><issue>4</issue><spage>1759</spage><epage>1770</epage><pages>1759-1770</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Polyamines are ubiquitous aliphatic amines that have been implicated in myriad processes, but their precise biochemical roles are not fully understood. We have carried out metabolite profiling analyses of transgenic tomato (Solanum lycopersicum) fruit engineered to accumulate the higher polyamines spermidine (Spd) and spermine (Spm) to bring an insight into the metabolic processes that Spd/Spm regulate in plants. NMR spectroscopic analysis revealed distinct metabolite trends in the transgenic and wild-type/azygous fruits ripened off the vine. Distinct metabolites (glutamine, asparagine, choline, citrate, fumarate, malate, and an unidentified compound A) accumulated in the red transgenic fruit, while the levels of valine, aspartic acid, sucrose, and glucose were significantly lower as compared to the control (wild-type and azygous) red fruit. The levels of isoleucine, glucose, γ-aminobutyrate, phenylalanine, and fructose remained similar in the nontransgenic and transgenic fruits. Statistical treatment of the metabolite variables distinguished the control fruits from the transgenic fruit and provided credence to the pronounced, differential metabolite profiles seen during ripening of the transgenic fruits. The pathways involved in the nitrogen sensing/signaling and carbon metabolism seem preferentially activated in the high Spd/Spm transgenics. The metabolite profiling analysis suggests that Spd and Spm are perceived as nitrogenous metabolites by the fruit cells, which in turn results in the stimulation of carbon sequestration. This is seen manifested in higher respiratory activity and up-regulation of phosphoenolpyruvate carboxylase and NADP-dependent isocitrate dehydrogenase transcripts in the transgenic fruit compared to controls, indicating high metabolic status of the transgenics even late in fruit ripening.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>17041034</pmid><doi>10.1104/pp.106.084400</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2006-12, Vol.142 (4), p.1759-1770 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_68228615 |
source | Jstor Complete Legacy; Oxford University Press Journals; MEDLINE; EZB Electronic Journals Library |
subjects | Agronomy. Soil science and plant productions amino acids Amino Acids - metabolism Biological and medical sciences Carbohydrate Metabolism Carbon Carbon - metabolism Cellular metabolism chemistry choline Choline - metabolism Citrates Economic plant physiology Fructification, ripening. Postharvest physiology Fruit Fruit - chemistry Fruit - genetics Fruit - metabolism fruiting Fruits Fundamental and applied biological sciences. Psychology gene expression regulation Gene Expression Regulation, Plant genetics Growth and development isocitrate dehydrogenase Isocitrate Dehydrogenase - genetics Isocitrate Dehydrogenase - metabolism Lycopersicon esculentum Metabolism Metabolites Nitrogen Nitrogen - metabolism nuclear magnetic resonance spectroscopy Nuclear Magnetic Resonance, Biomolecular organic acids and salts phosphoenolpyruvate carboxykinase (ATP) Phosphoenolpyruvate Carboxylase Phosphoenolpyruvate Carboxylase - genetics Phosphoenolpyruvate Carboxylase - metabolism Plants Plants, Genetically Modified Plants, Genetically Modified - chemistry Plants, Genetically Modified - metabolism Polyamines Ripening RNA, Messenger RNA, Messenger - metabolism Signal Transduction Solanum Solanum lycopersicum Solanum lycopersicum - genetics Solanum lycopersicum var. lycopersicum spectral analysis spermidine Spermidine - metabolism spermine Spermine - metabolism Systems Biology, Molecular Biology, and Gene Regulation Tomatoes Transgenic plants |
title | Nuclear Magnetic Resonance Spectroscopy-Based Metabolite Profiling of Transgenic Tomato Fruit Engineered to Accumulate Spermidine and Spermine Reveals Enhanced Anabolic and Nitrogen-Carbon Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Magnetic%20Resonance%20Spectroscopy-Based%20Metabolite%20Profiling%20of%20Transgenic%20Tomato%20Fruit%20Engineered%20to%20Accumulate%20Spermidine%20and%20Spermine%20Reveals%20Enhanced%20Anabolic%20and%20Nitrogen-Carbon%20Interactions&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Mattoo,%20Autar%20K.&rft.date=2006-12-01&rft.volume=142&rft.issue=4&rft.spage=1759&rft.epage=1770&rft.pages=1759-1770&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.106.084400&rft_dat=%3Cjstor_pubme%3E20206057%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19515311&rft_id=info:pmid/17041034&rft_jstor_id=20206057&rfr_iscdi=true |