Adult neurological function following neonatal hypoxia–ischemia in a mouse model of the term neonate: Water maze performance is dependent on separable cognitive and motor components

Background and purpose: Hypoxic–ischemic injury in term neonates remains a significant cause of long-term neurological morbidity. The post-natal day 10 (P10) mouse is accepted as a model for the term human. This study was designed to assess the relationships between the duration of hypoxia–ischemia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2006-11, Vol.1118 (1), p.208-221
Hauptverfasser: McAuliffe, John J., Miles, Lili, Vorhees, Charles V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 1
container_start_page 208
container_title Brain research
container_volume 1118
creator McAuliffe, John J.
Miles, Lili
Vorhees, Charles V.
description Background and purpose: Hypoxic–ischemic injury in term neonates remains a significant cause of long-term neurological morbidity. The post-natal day 10 (P10) mouse is accepted as a model for the term human. This study was designed to assess the relationships between the duration of hypoxia–ischemia (HI) on P10 and the structural and functional neurological deficits that appear in the adult mouse as a consequence. Methods: Post-natal day 10 129T2×C57Bl/6 F1 hybrid mice were subjected to 0, 45, 60 or 75 min of hypoxia–ischemia using the Rice–Vannucci model. Beginning on P50 these mice were tested over the next 8 weeks using zero maze, locomotor activity, novel object recognition, cued, hidden and reduced Morris water mazes, delayed probe trials and response to apomorphine injection. Brain weights and histology were obtained at the end of testing. Results: The degree of structural and behavioral abnormalities in adult mice correlated with the duration of hypoxia–ischemia on P10. Useful behavioral tests for separating adult mice according to duration of hypoxia–ischemia on P10 include locomotor activity, the Morris water mazes and response to apomorphine. We found cued “learning” persisted, although latencies increased, with increasing HI time while spatial learning decayed as a function of HI time. Severe HI injury involving the ventral hippocampus resulted in excessive locomotor activity. Conclusions: After correcting for motor deficits, there is evidence for persistence of “cued” learning but not spatial learning with increasing hypoxia–ischemia time on P10 in this model system.
doi_str_mv 10.1016/j.brainres.2006.08.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68212594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899306023833</els_id><sourcerecordid>19385020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-50b0516977a09f73fa5a9564c2d6b4fae6c705d8bdb83930bc584a66380287c63</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEotvCK1S-wC3BiRPH5kRV8U-qxAXE0XLsya5XiR1sp6WceAcehvfpkzDVLuqxl7Hs-c2Mv_mK4rymVU1r_mZfDVE7HyFVDaW8oqKijD4pNrXom5I3LX1abChmSiElOylOU9rjlTFJnxcnNZeyb0S_Kf5e2HXKxMMawxS2zuiJjKs32QVPxjBN4cb5LeaD1xlzu9sl_HT67vcfl8wOZqeJ80STOawJMFqYSBhJ3gHJEOdjIbwl3zFGMutfQBaIY4iz9gaIS8TCAt6CzwRHJlh01MMExIStd9ldA9HeYuccIr7NS_CIphfFs1FPCV4ez7Pi24f3Xy8_lVdfPn6-vLgqTdv0uezoQDtU2_eayrFno-607HhrGsuHdtTATU87KwY7CCYZHUwnWs05ExTXYzg7K14f-i4x_FghZTWjcJgmjcrWpLho6qaT7aNgLZnoaEMR5AfQxJBShFEt0c063qqaqntv1V7991bde6uoUOgtFp4fJ6zDDPah7GgmAq-OgE7o4xhxwy49cKLpul4y5N4dOMDFXTuIKhkH6IZ1EUxWNrjH_vIPLbbLXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19385020</pqid></control><display><type>article</type><title>Adult neurological function following neonatal hypoxia–ischemia in a mouse model of the term neonate: Water maze performance is dependent on separable cognitive and motor components</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>McAuliffe, John J. ; Miles, Lili ; Vorhees, Charles V.</creator><creatorcontrib>McAuliffe, John J. ; Miles, Lili ; Vorhees, Charles V.</creatorcontrib><description>Background and purpose: Hypoxic–ischemic injury in term neonates remains a significant cause of long-term neurological morbidity. The post-natal day 10 (P10) mouse is accepted as a model for the term human. This study was designed to assess the relationships between the duration of hypoxia–ischemia (HI) on P10 and the structural and functional neurological deficits that appear in the adult mouse as a consequence. Methods: Post-natal day 10 129T2×C57Bl/6 F1 hybrid mice were subjected to 0, 45, 60 or 75 min of hypoxia–ischemia using the Rice–Vannucci model. Beginning on P50 these mice were tested over the next 8 weeks using zero maze, locomotor activity, novel object recognition, cued, hidden and reduced Morris water mazes, delayed probe trials and response to apomorphine injection. Brain weights and histology were obtained at the end of testing. Results: The degree of structural and behavioral abnormalities in adult mice correlated with the duration of hypoxia–ischemia on P10. Useful behavioral tests for separating adult mice according to duration of hypoxia–ischemia on P10 include locomotor activity, the Morris water mazes and response to apomorphine. We found cued “learning” persisted, although latencies increased, with increasing HI time while spatial learning decayed as a function of HI time. Severe HI injury involving the ventral hippocampus resulted in excessive locomotor activity. Conclusions: After correcting for motor deficits, there is evidence for persistence of “cued” learning but not spatial learning with increasing hypoxia–ischemia time on P10 in this model system.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2006.08.030</identifier><identifier>PMID: 16997287</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Aging - physiology ; Animals ; Animals, Newborn ; Apomorphine ; Asphyxia Neonatorum - diagnosis ; Asphyxia Neonatorum - physiopathology ; Behavior, Animal - physiology ; Biological and medical sciences ; Brain - pathology ; Brain - physiopathology ; Brain Damage, Chronic - diagnosis ; Brain Damage, Chronic - etiology ; Brain Damage, Chronic - physiopathology ; Chimera ; Cognition Disorders - diagnosis ; Cognition Disorders - etiology ; Cognition Disorders - physiopathology ; Disability Evaluation ; Disease Models, Animal ; Hippocampus - pathology ; Hippocampus - physiopathology ; Humans ; Hypoxia-Ischemia, Brain - diagnosis ; Hypoxia-Ischemia, Brain - physiopathology ; Hypoxia–ischemia ; Infant, Newborn ; Learning Disorders - diagnosis ; Learning Disorders - etiology ; Learning Disorders - physiopathology ; Locomotor activity ; Maze Learning - physiology ; Medical sciences ; Memory Disorders - diagnosis ; Memory Disorders - etiology ; Memory Disorders - physiopathology ; Mice ; Mice, Inbred C57BL ; Morris water maze ; Motor Activity - physiology ; Movement Disorders - diagnosis ; Movement Disorders - etiology ; Movement Disorders - physiopathology ; Neonatal ; Neurology ; Time ; Time Factors ; Vascular diseases and vascular malformations of the nervous system</subject><ispartof>Brain research, 2006-11, Vol.1118 (1), p.208-221</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-50b0516977a09f73fa5a9564c2d6b4fae6c705d8bdb83930bc584a66380287c63</citedby><cites>FETCH-LOGICAL-c427t-50b0516977a09f73fa5a9564c2d6b4fae6c705d8bdb83930bc584a66380287c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.brainres.2006.08.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18255793$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16997287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McAuliffe, John J.</creatorcontrib><creatorcontrib>Miles, Lili</creatorcontrib><creatorcontrib>Vorhees, Charles V.</creatorcontrib><title>Adult neurological function following neonatal hypoxia–ischemia in a mouse model of the term neonate: Water maze performance is dependent on separable cognitive and motor components</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Background and purpose: Hypoxic–ischemic injury in term neonates remains a significant cause of long-term neurological morbidity. The post-natal day 10 (P10) mouse is accepted as a model for the term human. This study was designed to assess the relationships between the duration of hypoxia–ischemia (HI) on P10 and the structural and functional neurological deficits that appear in the adult mouse as a consequence. Methods: Post-natal day 10 129T2×C57Bl/6 F1 hybrid mice were subjected to 0, 45, 60 or 75 min of hypoxia–ischemia using the Rice–Vannucci model. Beginning on P50 these mice were tested over the next 8 weeks using zero maze, locomotor activity, novel object recognition, cued, hidden and reduced Morris water mazes, delayed probe trials and response to apomorphine injection. Brain weights and histology were obtained at the end of testing. Results: The degree of structural and behavioral abnormalities in adult mice correlated with the duration of hypoxia–ischemia on P10. Useful behavioral tests for separating adult mice according to duration of hypoxia–ischemia on P10 include locomotor activity, the Morris water mazes and response to apomorphine. We found cued “learning” persisted, although latencies increased, with increasing HI time while spatial learning decayed as a function of HI time. Severe HI injury involving the ventral hippocampus resulted in excessive locomotor activity. Conclusions: After correcting for motor deficits, there is evidence for persistence of “cued” learning but not spatial learning with increasing hypoxia–ischemia time on P10 in this model system.</description><subject>Aging - physiology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Apomorphine</subject><subject>Asphyxia Neonatorum - diagnosis</subject><subject>Asphyxia Neonatorum - physiopathology</subject><subject>Behavior, Animal - physiology</subject><subject>Biological and medical sciences</subject><subject>Brain - pathology</subject><subject>Brain - physiopathology</subject><subject>Brain Damage, Chronic - diagnosis</subject><subject>Brain Damage, Chronic - etiology</subject><subject>Brain Damage, Chronic - physiopathology</subject><subject>Chimera</subject><subject>Cognition Disorders - diagnosis</subject><subject>Cognition Disorders - etiology</subject><subject>Cognition Disorders - physiopathology</subject><subject>Disability Evaluation</subject><subject>Disease Models, Animal</subject><subject>Hippocampus - pathology</subject><subject>Hippocampus - physiopathology</subject><subject>Humans</subject><subject>Hypoxia-Ischemia, Brain - diagnosis</subject><subject>Hypoxia-Ischemia, Brain - physiopathology</subject><subject>Hypoxia–ischemia</subject><subject>Infant, Newborn</subject><subject>Learning Disorders - diagnosis</subject><subject>Learning Disorders - etiology</subject><subject>Learning Disorders - physiopathology</subject><subject>Locomotor activity</subject><subject>Maze Learning - physiology</subject><subject>Medical sciences</subject><subject>Memory Disorders - diagnosis</subject><subject>Memory Disorders - etiology</subject><subject>Memory Disorders - physiopathology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Morris water maze</subject><subject>Motor Activity - physiology</subject><subject>Movement Disorders - diagnosis</subject><subject>Movement Disorders - etiology</subject><subject>Movement Disorders - physiopathology</subject><subject>Neonatal</subject><subject>Neurology</subject><subject>Time</subject><subject>Time Factors</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxiMEotvCK1S-wC3BiRPH5kRV8U-qxAXE0XLsya5XiR1sp6WceAcehvfpkzDVLuqxl7Hs-c2Mv_mK4rymVU1r_mZfDVE7HyFVDaW8oqKijD4pNrXom5I3LX1abChmSiElOylOU9rjlTFJnxcnNZeyb0S_Kf5e2HXKxMMawxS2zuiJjKs32QVPxjBN4cb5LeaD1xlzu9sl_HT67vcfl8wOZqeJ80STOawJMFqYSBhJ3gHJEOdjIbwl3zFGMutfQBaIY4iz9gaIS8TCAt6CzwRHJlh01MMExIStd9ldA9HeYuccIr7NS_CIphfFs1FPCV4ez7Pi24f3Xy8_lVdfPn6-vLgqTdv0uezoQDtU2_eayrFno-607HhrGsuHdtTATU87KwY7CCYZHUwnWs05ExTXYzg7K14f-i4x_FghZTWjcJgmjcrWpLho6qaT7aNgLZnoaEMR5AfQxJBShFEt0c063qqaqntv1V7991bde6uoUOgtFp4fJ6zDDPah7GgmAq-OgE7o4xhxwy49cKLpul4y5N4dOMDFXTuIKhkH6IZ1EUxWNrjH_vIPLbbLXg</recordid><startdate>20061106</startdate><enddate>20061106</enddate><creator>McAuliffe, John J.</creator><creator>Miles, Lili</creator><creator>Vorhees, Charles V.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20061106</creationdate><title>Adult neurological function following neonatal hypoxia–ischemia in a mouse model of the term neonate: Water maze performance is dependent on separable cognitive and motor components</title><author>McAuliffe, John J. ; Miles, Lili ; Vorhees, Charles V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-50b0516977a09f73fa5a9564c2d6b4fae6c705d8bdb83930bc584a66380287c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aging - physiology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Apomorphine</topic><topic>Asphyxia Neonatorum - diagnosis</topic><topic>Asphyxia Neonatorum - physiopathology</topic><topic>Behavior, Animal - physiology</topic><topic>Biological and medical sciences</topic><topic>Brain - pathology</topic><topic>Brain - physiopathology</topic><topic>Brain Damage, Chronic - diagnosis</topic><topic>Brain Damage, Chronic - etiology</topic><topic>Brain Damage, Chronic - physiopathology</topic><topic>Chimera</topic><topic>Cognition Disorders - diagnosis</topic><topic>Cognition Disorders - etiology</topic><topic>Cognition Disorders - physiopathology</topic><topic>Disability Evaluation</topic><topic>Disease Models, Animal</topic><topic>Hippocampus - pathology</topic><topic>Hippocampus - physiopathology</topic><topic>Humans</topic><topic>Hypoxia-Ischemia, Brain - diagnosis</topic><topic>Hypoxia-Ischemia, Brain - physiopathology</topic><topic>Hypoxia–ischemia</topic><topic>Infant, Newborn</topic><topic>Learning Disorders - diagnosis</topic><topic>Learning Disorders - etiology</topic><topic>Learning Disorders - physiopathology</topic><topic>Locomotor activity</topic><topic>Maze Learning - physiology</topic><topic>Medical sciences</topic><topic>Memory Disorders - diagnosis</topic><topic>Memory Disorders - etiology</topic><topic>Memory Disorders - physiopathology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Morris water maze</topic><topic>Motor Activity - physiology</topic><topic>Movement Disorders - diagnosis</topic><topic>Movement Disorders - etiology</topic><topic>Movement Disorders - physiopathology</topic><topic>Neonatal</topic><topic>Neurology</topic><topic>Time</topic><topic>Time Factors</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAuliffe, John J.</creatorcontrib><creatorcontrib>Miles, Lili</creatorcontrib><creatorcontrib>Vorhees, Charles V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAuliffe, John J.</au><au>Miles, Lili</au><au>Vorhees, Charles V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adult neurological function following neonatal hypoxia–ischemia in a mouse model of the term neonate: Water maze performance is dependent on separable cognitive and motor components</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2006-11-06</date><risdate>2006</risdate><volume>1118</volume><issue>1</issue><spage>208</spage><epage>221</epage><pages>208-221</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Background and purpose: Hypoxic–ischemic injury in term neonates remains a significant cause of long-term neurological morbidity. The post-natal day 10 (P10) mouse is accepted as a model for the term human. This study was designed to assess the relationships between the duration of hypoxia–ischemia (HI) on P10 and the structural and functional neurological deficits that appear in the adult mouse as a consequence. Methods: Post-natal day 10 129T2×C57Bl/6 F1 hybrid mice were subjected to 0, 45, 60 or 75 min of hypoxia–ischemia using the Rice–Vannucci model. Beginning on P50 these mice were tested over the next 8 weeks using zero maze, locomotor activity, novel object recognition, cued, hidden and reduced Morris water mazes, delayed probe trials and response to apomorphine injection. Brain weights and histology were obtained at the end of testing. Results: The degree of structural and behavioral abnormalities in adult mice correlated with the duration of hypoxia–ischemia on P10. Useful behavioral tests for separating adult mice according to duration of hypoxia–ischemia on P10 include locomotor activity, the Morris water mazes and response to apomorphine. We found cued “learning” persisted, although latencies increased, with increasing HI time while spatial learning decayed as a function of HI time. Severe HI injury involving the ventral hippocampus resulted in excessive locomotor activity. Conclusions: After correcting for motor deficits, there is evidence for persistence of “cued” learning but not spatial learning with increasing hypoxia–ischemia time on P10 in this model system.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>16997287</pmid><doi>10.1016/j.brainres.2006.08.030</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2006-11, Vol.1118 (1), p.208-221
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_68212594
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Aging - physiology
Animals
Animals, Newborn
Apomorphine
Asphyxia Neonatorum - diagnosis
Asphyxia Neonatorum - physiopathology
Behavior, Animal - physiology
Biological and medical sciences
Brain - pathology
Brain - physiopathology
Brain Damage, Chronic - diagnosis
Brain Damage, Chronic - etiology
Brain Damage, Chronic - physiopathology
Chimera
Cognition Disorders - diagnosis
Cognition Disorders - etiology
Cognition Disorders - physiopathology
Disability Evaluation
Disease Models, Animal
Hippocampus - pathology
Hippocampus - physiopathology
Humans
Hypoxia-Ischemia, Brain - diagnosis
Hypoxia-Ischemia, Brain - physiopathology
Hypoxia–ischemia
Infant, Newborn
Learning Disorders - diagnosis
Learning Disorders - etiology
Learning Disorders - physiopathology
Locomotor activity
Maze Learning - physiology
Medical sciences
Memory Disorders - diagnosis
Memory Disorders - etiology
Memory Disorders - physiopathology
Mice
Mice, Inbred C57BL
Morris water maze
Motor Activity - physiology
Movement Disorders - diagnosis
Movement Disorders - etiology
Movement Disorders - physiopathology
Neonatal
Neurology
Time
Time Factors
Vascular diseases and vascular malformations of the nervous system
title Adult neurological function following neonatal hypoxia–ischemia in a mouse model of the term neonate: Water maze performance is dependent on separable cognitive and motor components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adult%20neurological%20function%20following%20neonatal%20hypoxia%E2%80%93ischemia%20in%20a%20mouse%20model%20of%20the%20term%20neonate:%20Water%20maze%20performance%20is%20dependent%20on%20separable%20cognitive%20and%20motor%20components&rft.jtitle=Brain%20research&rft.au=McAuliffe,%20John%20J.&rft.date=2006-11-06&rft.volume=1118&rft.issue=1&rft.spage=208&rft.epage=221&rft.pages=208-221&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/j.brainres.2006.08.030&rft_dat=%3Cproquest_cross%3E19385020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19385020&rft_id=info:pmid/16997287&rft_els_id=S0006899306023833&rfr_iscdi=true