Kalman filtering for disease-state estimation from microarray data
Motivation: In this paper, we propose using the Kalman filter (KF) as a pre-processing step in microarray-based molecular diagnosis. Incorporating the expression covariance between genes is important in such classification problems, since this represents the functional relationships that govern tiss...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2006-12, Vol.22 (24), p.3047-3053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3053 |
---|---|
container_issue | 24 |
container_start_page | 3047 |
container_title | Bioinformatics |
container_volume | 22 |
creator | Kelemen, János Z. Kertész-Farkas, Attila Kocsor, András Puskás, László G. |
description | Motivation: In this paper, we propose using the Kalman filter (KF) as a pre-processing step in microarray-based molecular diagnosis. Incorporating the expression covariance between genes is important in such classification problems, since this represents the functional relationships that govern tissue state. Failing to fulfil such requirements may result in biologically implausible class prediction models. Here, we show that employing the KF to remove noise (while retaining meaningful covariance and thus being able to estimate the underlying biological state from microarray measurements) yields linearly separable data suitable for most classification algorithms. Results: We demonstrate the utility and performance of the KF as a robust disease-state estimator on publicly available binary and multi-class microarray datasets in combination with the most widely used classification methods to date. Moreover, using popular graphical representation schemes we show that our filtered datasets also have an improved visualization capability. Contact:kelli@nucleus.szbk.u-szeged.hu. Supplementary information: |
doi_str_mv | 10.1093/bioinformatics/btl545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68209733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19507773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-a75ab2280ef069f8cea2d4b015511e4e2fefa77d84f108cef5c4faf837a96c4a3</originalsourceid><addsrcrecordid>eNqF0VtLHDEUAOAgFbW2P6FlKLRvoyeTZJJ5bEV3xQVFKhZfwplMUrKdiyZZ0H9vll0U--JTAvnOybkQ8oXCEYWGHbd-8qObwoDJm3jcpl5wsUMOKK-hrEA0H_Kd1bLkCtg--RjjEkBQzvke2acSakGFOiC_LrAfcCyc75MNfvxb5JxF56PFaMuYMNnCxuTX30yZhWkoBm_ChCHgU9Fhwk9k12Ef7efteUhuzk5_n8zLxeXs_OTnojS5hFSiFNhWlQLroG6cMharjrdAhaDUcls561DKTnFHIb86YbhDp5jEpjYc2SH5scl7H6aHVS5KDz4a2_c42mkVda0qaCRj70LaCJBSruG3_-ByWoUxN5GNkowr1mQkNig3HWOwTt-HPI7wpCno9Sr021XozSpy3Ndt8lU72O41ajv7DL5vAUaDvQs4Gh9fneJAFePZlRvnY7KPL-8Y_ulaMin0_M-d5rfXcDW7VpqyZ-CYptE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198734839</pqid></control><display><type>article</type><title>Kalman filtering for disease-state estimation from microarray data</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kelemen, János Z. ; Kertész-Farkas, Attila ; Kocsor, András ; Puskás, László G.</creator><creatorcontrib>Kelemen, János Z. ; Kertész-Farkas, Attila ; Kocsor, András ; Puskás, László G.</creatorcontrib><description>Motivation: In this paper, we propose using the Kalman filter (KF) as a pre-processing step in microarray-based molecular diagnosis. Incorporating the expression covariance between genes is important in such classification problems, since this represents the functional relationships that govern tissue state. Failing to fulfil such requirements may result in biologically implausible class prediction models. Here, we show that employing the KF to remove noise (while retaining meaningful covariance and thus being able to estimate the underlying biological state from microarray measurements) yields linearly separable data suitable for most classification algorithms. Results: We demonstrate the utility and performance of the KF as a robust disease-state estimator on publicly available binary and multi-class microarray datasets in combination with the most widely used classification methods to date. Moreover, using popular graphical representation schemes we show that our filtered datasets also have an improved visualization capability. Contact:kelli@nucleus.szbk.u-szeged.hu. Supplementary information:</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btl545</identifier><identifier>PMID: 17065158</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Biological and medical sciences ; Biomarkers, Tumor - analysis ; Diagnosis, Computer-Assisted - methods ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling - methods ; General aspects ; Humans ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Neoplasm Proteins - analysis ; Neoplasms - diagnosis ; Neoplasms - metabolism ; Oligonucleotide Array Sequence Analysis - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Systems Theory</subject><ispartof>Bioinformatics, 2006-12, Vol.22 (24), p.3047-3053</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Dec 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-a75ab2280ef069f8cea2d4b015511e4e2fefa77d84f108cef5c4faf837a96c4a3</citedby><cites>FETCH-LOGICAL-c480t-a75ab2280ef069f8cea2d4b015511e4e2fefa77d84f108cef5c4faf837a96c4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18401834$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17065158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelemen, János Z.</creatorcontrib><creatorcontrib>Kertész-Farkas, Attila</creatorcontrib><creatorcontrib>Kocsor, András</creatorcontrib><creatorcontrib>Puskás, László G.</creatorcontrib><title>Kalman filtering for disease-state estimation from microarray data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: In this paper, we propose using the Kalman filter (KF) as a pre-processing step in microarray-based molecular diagnosis. Incorporating the expression covariance between genes is important in such classification problems, since this represents the functional relationships that govern tissue state. Failing to fulfil such requirements may result in biologically implausible class prediction models. Here, we show that employing the KF to remove noise (while retaining meaningful covariance and thus being able to estimate the underlying biological state from microarray measurements) yields linearly separable data suitable for most classification algorithms. Results: We demonstrate the utility and performance of the KF as a robust disease-state estimator on publicly available binary and multi-class microarray datasets in combination with the most widely used classification methods to date. Moreover, using popular graphical representation schemes we show that our filtered datasets also have an improved visualization capability. Contact:kelli@nucleus.szbk.u-szeged.hu. Supplementary information:</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Biomarkers, Tumor - analysis</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Humans</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Neoplasm Proteins - analysis</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Systems Theory</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0VtLHDEUAOAgFbW2P6FlKLRvoyeTZJJ5bEV3xQVFKhZfwplMUrKdiyZZ0H9vll0U--JTAvnOybkQ8oXCEYWGHbd-8qObwoDJm3jcpl5wsUMOKK-hrEA0H_Kd1bLkCtg--RjjEkBQzvke2acSakGFOiC_LrAfcCyc75MNfvxb5JxF56PFaMuYMNnCxuTX30yZhWkoBm_ChCHgU9Fhwk9k12Ef7efteUhuzk5_n8zLxeXs_OTnojS5hFSiFNhWlQLroG6cMharjrdAhaDUcls561DKTnFHIb86YbhDp5jEpjYc2SH5scl7H6aHVS5KDz4a2_c42mkVda0qaCRj70LaCJBSruG3_-ByWoUxN5GNkowr1mQkNig3HWOwTt-HPI7wpCno9Sr021XozSpy3Ndt8lU72O41ajv7DL5vAUaDvQs4Gh9fneJAFePZlRvnY7KPL-8Y_ulaMin0_M-d5rfXcDW7VpqyZ-CYptE</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Kelemen, János Z.</creator><creator>Kertész-Farkas, Attila</creator><creator>Kocsor, András</creator><creator>Puskás, László G.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061215</creationdate><title>Kalman filtering for disease-state estimation from microarray data</title><author>Kelemen, János Z. ; Kertész-Farkas, Attila ; Kocsor, András ; Puskás, László G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-a75ab2280ef069f8cea2d4b015511e4e2fefa77d84f108cef5c4faf837a96c4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Biomarkers, Tumor - analysis</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Humans</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Neoplasm Proteins - analysis</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelemen, János Z.</creatorcontrib><creatorcontrib>Kertész-Farkas, Attila</creatorcontrib><creatorcontrib>Kocsor, András</creatorcontrib><creatorcontrib>Puskás, László G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelemen, János Z.</au><au>Kertész-Farkas, Attila</au><au>Kocsor, András</au><au>Puskás, László G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kalman filtering for disease-state estimation from microarray data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2006-12-15</date><risdate>2006</risdate><volume>22</volume><issue>24</issue><spage>3047</spage><epage>3053</epage><pages>3047-3053</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: In this paper, we propose using the Kalman filter (KF) as a pre-processing step in microarray-based molecular diagnosis. Incorporating the expression covariance between genes is important in such classification problems, since this represents the functional relationships that govern tissue state. Failing to fulfil such requirements may result in biologically implausible class prediction models. Here, we show that employing the KF to remove noise (while retaining meaningful covariance and thus being able to estimate the underlying biological state from microarray measurements) yields linearly separable data suitable for most classification algorithms. Results: We demonstrate the utility and performance of the KF as a robust disease-state estimator on publicly available binary and multi-class microarray datasets in combination with the most widely used classification methods to date. Moreover, using popular graphical representation schemes we show that our filtered datasets also have an improved visualization capability. Contact:kelli@nucleus.szbk.u-szeged.hu. Supplementary information:</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>17065158</pmid><doi>10.1093/bioinformatics/btl545</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2006-12, Vol.22 (24), p.3047-3053 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_68209733 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Biological and medical sciences Biomarkers, Tumor - analysis Diagnosis, Computer-Assisted - methods Fundamental and applied biological sciences. Psychology Gene Expression Profiling - methods General aspects Humans Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Neoplasm Proteins - analysis Neoplasms - diagnosis Neoplasms - metabolism Oligonucleotide Array Sequence Analysis - methods Reproducibility of Results Sensitivity and Specificity Systems Theory |
title | Kalman filtering for disease-state estimation from microarray data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A35%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kalman%20filtering%20for%20disease-state%20estimation%20from%20microarray%20data&rft.jtitle=Bioinformatics&rft.au=Kelemen,%20J%C3%A1nos%20Z.&rft.date=2006-12-15&rft.volume=22&rft.issue=24&rft.spage=3047&rft.epage=3053&rft.pages=3047-3053&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btl545&rft_dat=%3Cproquest_cross%3E19507773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198734839&rft_id=info:pmid/17065158&rfr_iscdi=true |