Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology

To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of molecular diagnostics : JMD 2007-09, Vol.9 (4), p.546-555
Hauptverfasser: Abruzzo, Lynne V, Barron, Lynn L, Anderson, Keith, Newman, Rachel J, Wierda, William G, O'brien, Susan, Ferrajoli, Alessandra, Luthra, Madan, Talwalkar, Sameer, Luthra, Rajyalakshmi, Jones, Dan, Keating, Michael J, Coombes, Kevin R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 555
container_issue 4
container_start_page 546
container_title The Journal of molecular diagnostics : JMD
container_volume 9
creator Abruzzo, Lynne V
Barron, Lynn L
Anderson, Keith
Newman, Rachel J
Wierda, William G
O'brien, Susan
Ferrajoli, Alessandra
Luthra, Madan
Talwalkar, Sameer
Luthra, Rajyalakshmi
Jones, Dan
Keating, Michael J
Coombes, Kevin R
description To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68208550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68208550</sourcerecordid><originalsourceid>FETCH-LOGICAL-p544-a914abcd93a04ca4ea7bfb7c5efe4ca661f3038e2a167e05d886a680a9895baf3</originalsourceid><addsrcrecordid>eNo1kMFOwzAQRHMA0VL4BeQTgkMkJ7ET54gqoJWQuFRco42zbk3jOI3jSvkw_g-XltPsaEdvpLmK5glPeZzwQsyiW-e-KU0Yy9ObaJYUeUnThM2jn3WD3aiVljBq2xHoGnKEVjdnaxWptTUw7HFwJ7fefj2tnonx4znggnpHdEfkbrCdlqSdTL-zchpPN_o9Gg3EO91tidFysKr1utHSkYOH0HziHJEMCG08aoOkt4GAAzgMSAjg8JJ_XSPKXWdbu53uomsFrcP7iy6izdvrZrmKPz7f18uXj7jnjMVQJgxq2ZQZUCaBIRS1qgvJUWHweZ6ojGYCU0jyAilvhMghFxRKUfIaVLaIHs_YfrAHj26sjHYS2xY6tN5VuUip4JyG4MMl6GuDTdUPOmw2Vf87Z79mmn8_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68208550</pqid></control><display><type>article</type><title>Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Abruzzo, Lynne V ; Barron, Lynn L ; Anderson, Keith ; Newman, Rachel J ; Wierda, William G ; O'brien, Susan ; Ferrajoli, Alessandra ; Luthra, Madan ; Talwalkar, Sameer ; Luthra, Rajyalakshmi ; Jones, Dan ; Keating, Michael J ; Coombes, Kevin R</creator><creatorcontrib>Abruzzo, Lynne V ; Barron, Lynn L ; Anderson, Keith ; Newman, Rachel J ; Wierda, William G ; O'brien, Susan ; Ferrajoli, Alessandra ; Luthra, Madan ; Talwalkar, Sameer ; Luthra, Rajyalakshmi ; Jones, Dan ; Keating, Michael J ; Coombes, Kevin R</creatorcontrib><description>To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.</description><identifier>ISSN: 1525-1578</identifier><identifier>PMID: 17690214</identifier><language>eng</language><publisher>United States</publisher><subject>Biomarkers, Tumor - genetics ; Cluster Analysis ; Gene Expression Profiling ; Genetic Markers ; Humans ; Immunoglobulin Heavy Chains - genetics ; Immunoglobulin Variable Region - genetics ; Leukemia, Lymphocytic, Chronic, B-Cell - genetics ; Microfluidics - methods ; Models, Genetic ; Mutation - genetics ; Polymerase Chain Reaction - methods ; Reproducibility of Results</subject><ispartof>The Journal of molecular diagnostics : JMD, 2007-09, Vol.9 (4), p.546-555</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17690214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abruzzo, Lynne V</creatorcontrib><creatorcontrib>Barron, Lynn L</creatorcontrib><creatorcontrib>Anderson, Keith</creatorcontrib><creatorcontrib>Newman, Rachel J</creatorcontrib><creatorcontrib>Wierda, William G</creatorcontrib><creatorcontrib>O'brien, Susan</creatorcontrib><creatorcontrib>Ferrajoli, Alessandra</creatorcontrib><creatorcontrib>Luthra, Madan</creatorcontrib><creatorcontrib>Talwalkar, Sameer</creatorcontrib><creatorcontrib>Luthra, Rajyalakshmi</creatorcontrib><creatorcontrib>Jones, Dan</creatorcontrib><creatorcontrib>Keating, Michael J</creatorcontrib><creatorcontrib>Coombes, Kevin R</creatorcontrib><title>Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology</title><title>The Journal of molecular diagnostics : JMD</title><addtitle>J Mol Diagn</addtitle><description>To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.</description><subject>Biomarkers, Tumor - genetics</subject><subject>Cluster Analysis</subject><subject>Gene Expression Profiling</subject><subject>Genetic Markers</subject><subject>Humans</subject><subject>Immunoglobulin Heavy Chains - genetics</subject><subject>Immunoglobulin Variable Region - genetics</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</subject><subject>Microfluidics - methods</subject><subject>Models, Genetic</subject><subject>Mutation - genetics</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Reproducibility of Results</subject><issn>1525-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kMFOwzAQRHMA0VL4BeQTgkMkJ7ET54gqoJWQuFRco42zbk3jOI3jSvkw_g-XltPsaEdvpLmK5glPeZzwQsyiW-e-KU0Yy9ObaJYUeUnThM2jn3WD3aiVljBq2xHoGnKEVjdnaxWptTUw7HFwJ7fefj2tnonx4znggnpHdEfkbrCdlqSdTL-zchpPN_o9Gg3EO91tidFysKr1utHSkYOH0HziHJEMCG08aoOkt4GAAzgMSAjg8JJ_XSPKXWdbu53uomsFrcP7iy6izdvrZrmKPz7f18uXj7jnjMVQJgxq2ZQZUCaBIRS1qgvJUWHweZ6ojGYCU0jyAilvhMghFxRKUfIaVLaIHs_YfrAHj26sjHYS2xY6tN5VuUip4JyG4MMl6GuDTdUPOmw2Vf87Z79mmn8_</recordid><startdate>200709</startdate><enddate>200709</enddate><creator>Abruzzo, Lynne V</creator><creator>Barron, Lynn L</creator><creator>Anderson, Keith</creator><creator>Newman, Rachel J</creator><creator>Wierda, William G</creator><creator>O'brien, Susan</creator><creator>Ferrajoli, Alessandra</creator><creator>Luthra, Madan</creator><creator>Talwalkar, Sameer</creator><creator>Luthra, Rajyalakshmi</creator><creator>Jones, Dan</creator><creator>Keating, Michael J</creator><creator>Coombes, Kevin R</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200709</creationdate><title>Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology</title><author>Abruzzo, Lynne V ; Barron, Lynn L ; Anderson, Keith ; Newman, Rachel J ; Wierda, William G ; O'brien, Susan ; Ferrajoli, Alessandra ; Luthra, Madan ; Talwalkar, Sameer ; Luthra, Rajyalakshmi ; Jones, Dan ; Keating, Michael J ; Coombes, Kevin R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p544-a914abcd93a04ca4ea7bfb7c5efe4ca661f3038e2a167e05d886a680a9895baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biomarkers, Tumor - genetics</topic><topic>Cluster Analysis</topic><topic>Gene Expression Profiling</topic><topic>Genetic Markers</topic><topic>Humans</topic><topic>Immunoglobulin Heavy Chains - genetics</topic><topic>Immunoglobulin Variable Region - genetics</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - genetics</topic><topic>Microfluidics - methods</topic><topic>Models, Genetic</topic><topic>Mutation - genetics</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abruzzo, Lynne V</creatorcontrib><creatorcontrib>Barron, Lynn L</creatorcontrib><creatorcontrib>Anderson, Keith</creatorcontrib><creatorcontrib>Newman, Rachel J</creatorcontrib><creatorcontrib>Wierda, William G</creatorcontrib><creatorcontrib>O'brien, Susan</creatorcontrib><creatorcontrib>Ferrajoli, Alessandra</creatorcontrib><creatorcontrib>Luthra, Madan</creatorcontrib><creatorcontrib>Talwalkar, Sameer</creatorcontrib><creatorcontrib>Luthra, Rajyalakshmi</creatorcontrib><creatorcontrib>Jones, Dan</creatorcontrib><creatorcontrib>Keating, Michael J</creatorcontrib><creatorcontrib>Coombes, Kevin R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of molecular diagnostics : JMD</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abruzzo, Lynne V</au><au>Barron, Lynn L</au><au>Anderson, Keith</au><au>Newman, Rachel J</au><au>Wierda, William G</au><au>O'brien, Susan</au><au>Ferrajoli, Alessandra</au><au>Luthra, Madan</au><au>Talwalkar, Sameer</au><au>Luthra, Rajyalakshmi</au><au>Jones, Dan</au><au>Keating, Michael J</au><au>Coombes, Kevin R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology</atitle><jtitle>The Journal of molecular diagnostics : JMD</jtitle><addtitle>J Mol Diagn</addtitle><date>2007-09</date><risdate>2007</risdate><volume>9</volume><issue>4</issue><spage>546</spage><epage>555</epage><pages>546-555</pages><issn>1525-1578</issn><abstract>To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.</abstract><cop>United States</cop><pmid>17690214</pmid><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-1578
ispartof The Journal of molecular diagnostics : JMD, 2007-09, Vol.9 (4), p.546-555
issn 1525-1578
language eng
recordid cdi_proquest_miscellaneous_68208550
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Biomarkers, Tumor - genetics
Cluster Analysis
Gene Expression Profiling
Genetic Markers
Humans
Immunoglobulin Heavy Chains - genetics
Immunoglobulin Variable Region - genetics
Leukemia, Lymphocytic, Chronic, B-Cell - genetics
Microfluidics - methods
Models, Genetic
Mutation - genetics
Polymerase Chain Reaction - methods
Reproducibility of Results
title Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20validation%20of%20biomarkers%20of%20IgV(H)%20mutation%20status%20in%20chronic%20lymphocytic%20leukemia%20using%20microfluidics%20quantitative%20real-time%20polymerase%20chain%20reaction%20technology&rft.jtitle=The%20Journal%20of%20molecular%20diagnostics%20:%20JMD&rft.au=Abruzzo,%20Lynne%20V&rft.date=2007-09&rft.volume=9&rft.issue=4&rft.spage=546&rft.epage=555&rft.pages=546-555&rft.issn=1525-1578&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E68208550%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68208550&rft_id=info:pmid/17690214&rfr_iscdi=true