X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging

The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 Å. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2007-09, Vol.46 (35), p.9865-9873
Hauptverfasser: Malo, Gabrielle D, Pouwels, Lauren J, Wang, Meitian, Weichsel, Andrzej, Montfort, William R, Rizzo, Mark A, Piston, David W, Wachter, Rebekka M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9873
container_issue 35
container_start_page 9865
container_title Biochemistry (Easton)
container_volume 46
creator Malo, Gabrielle D
Pouwels, Lauren J
Wang, Meitian
Weichsel, Andrzej
Montfort, William R
Rizzo, Mark A
Piston, David W
Wachter, Rebekka M
description The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 Å. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone ring via a methylene bridge. Cerulean undergoes highly efficient fluorescence resonance energy transfer (FRET) to yellow acceptor molecules and exhibits significantly reduced excited-state heterogeneity. This feature was rationally engineered in ECFP by substituting His148 with an aspartic acid [Rizzo et al. (2004) Nat. Biotechnol. 22, 445], rendering Cerulean useful for fluorescence lifetime imaging microscopy (FLIM). The X-ray structure is consistent with a single conformation of the chromophore and surrounding residues and may therefore provide a structural rationale for the previously described monoexponential fluorescence decay. Unexpectedly, the carboxyl group of H148D is found in a buried position, directly contacting the indole nitrogen of the chromophore via a bifurcated hydrogen bond. Compared to the similarly constructed ECFP chromophore, the indole group of Cerulean is rotated around the methylene bridge to adopt a cis-coplanar conformation with respect to the imidazolinone ring, resulting in a close edge-to-edge contact of the two ring systems. The double-humped absorbance spectrum persists in single-crystal absorbance measurements, casting doubt on the idea that ground state conformational heterogeneity forms the basis of the two overlapping transitions. At low pH, a blue shift in absorbance of 10−15 nm suggests a pH-induced structural transition that proceeds with a time constant of 47 (±2) min and is reversible. Possible interpretations in terms of chromophore isomerization are presented.
doi_str_mv 10.1021/bi602664c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68205744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68205744</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-49fabbd3116d0fe4e5f9473c7d5b9a2a1c7e5282b88c3b09bc259f6d25bcf7ab3</originalsourceid><addsrcrecordid>eNptkE1v1DAQhi0EokvhwB9AvoDEIWA7_ki4tRFpK61Epd1KvVm2M27T5mOxY4m9ceVv8ksw2lW5cBrNO8_MvHoRekvJJ0oY_Wx7SZiU3D1DKyoYKXhdi-doRQiRBaslOUGvYnzILSeKv0QnVMlKCMFX6PG2CGaPN0tIbkkB8OxxAyENYCZ80V5_-f3zFz7D27DfLfPu3kzFuYnQ4eY-zGMW5rxyE8GnAfs54HZIWYkOJgd43XtY-hHw1Wju-unuNXrhzRDhzbGeopv267a5LNbfLq6as3VhOFVLNu-NtV1JqeyIBw7C11yVTnXC1oYZ6hQIVjFbVa60pLaOidrLjgnrvDK2PEUfDnd3Yf6eIC567LOlYTATzClqWTEiFOcZ_HgAXZhjDOD1LvSjCXtNif6brH5KNrPvjkeTHaH7Rx6jzEBxAPq4wI-nuQmPWqpSCb293uhNe9teEnGum8y_P_DGRf0wpzDlTP7z-A9l-5BI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68205744</pqid></control><display><type>article</type><title>X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Malo, Gabrielle D ; Pouwels, Lauren J ; Wang, Meitian ; Weichsel, Andrzej ; Montfort, William R ; Rizzo, Mark A ; Piston, David W ; Wachter, Rebekka M</creator><creatorcontrib>Malo, Gabrielle D ; Pouwels, Lauren J ; Wang, Meitian ; Weichsel, Andrzej ; Montfort, William R ; Rizzo, Mark A ; Piston, David W ; Wachter, Rebekka M</creatorcontrib><description>The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 Å. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone ring via a methylene bridge. Cerulean undergoes highly efficient fluorescence resonance energy transfer (FRET) to yellow acceptor molecules and exhibits significantly reduced excited-state heterogeneity. This feature was rationally engineered in ECFP by substituting His148 with an aspartic acid [Rizzo et al. (2004) Nat. Biotechnol. 22, 445], rendering Cerulean useful for fluorescence lifetime imaging microscopy (FLIM). The X-ray structure is consistent with a single conformation of the chromophore and surrounding residues and may therefore provide a structural rationale for the previously described monoexponential fluorescence decay. Unexpectedly, the carboxyl group of H148D is found in a buried position, directly contacting the indole nitrogen of the chromophore via a bifurcated hydrogen bond. Compared to the similarly constructed ECFP chromophore, the indole group of Cerulean is rotated around the methylene bridge to adopt a cis-coplanar conformation with respect to the imidazolinone ring, resulting in a close edge-to-edge contact of the two ring systems. The double-humped absorbance spectrum persists in single-crystal absorbance measurements, casting doubt on the idea that ground state conformational heterogeneity forms the basis of the two overlapping transitions. At low pH, a blue shift in absorbance of 10−15 nm suggests a pH-induced structural transition that proceeds with a time constant of 47 (±2) min and is reversible. Possible interpretations in terms of chromophore isomerization are presented.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi602664c</identifier><identifier>PMID: 17685554</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Crystallization ; Crystallography, X-Ray ; Directed Molecular Evolution - methods ; Fluorescence Resonance Energy Transfer - methods ; Fluorescent Dyes - chemistry ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - metabolism ; Histidine - chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Imidazoles - chemistry ; Indicators and Reagents ; Microscopy, Fluorescence, Multiphoton - instrumentation ; Microscopy, Fluorescence, Multiphoton - methods ; Models, Molecular ; Photoreceptors, Microbial ; Protein Conformation ; Protein Engineering ; Recombinant Proteins ; Tryptophan - chemistry</subject><ispartof>Biochemistry (Easton), 2007-09, Vol.46 (35), p.9865-9873</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-49fabbd3116d0fe4e5f9473c7d5b9a2a1c7e5282b88c3b09bc259f6d25bcf7ab3</citedby><cites>FETCH-LOGICAL-a417t-49fabbd3116d0fe4e5f9473c7d5b9a2a1c7e5282b88c3b09bc259f6d25bcf7ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi602664c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi602664c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17685554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malo, Gabrielle D</creatorcontrib><creatorcontrib>Pouwels, Lauren J</creatorcontrib><creatorcontrib>Wang, Meitian</creatorcontrib><creatorcontrib>Weichsel, Andrzej</creatorcontrib><creatorcontrib>Montfort, William R</creatorcontrib><creatorcontrib>Rizzo, Mark A</creatorcontrib><creatorcontrib>Piston, David W</creatorcontrib><creatorcontrib>Wachter, Rebekka M</creatorcontrib><title>X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 Å. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone ring via a methylene bridge. Cerulean undergoes highly efficient fluorescence resonance energy transfer (FRET) to yellow acceptor molecules and exhibits significantly reduced excited-state heterogeneity. This feature was rationally engineered in ECFP by substituting His148 with an aspartic acid [Rizzo et al. (2004) Nat. Biotechnol. 22, 445], rendering Cerulean useful for fluorescence lifetime imaging microscopy (FLIM). The X-ray structure is consistent with a single conformation of the chromophore and surrounding residues and may therefore provide a structural rationale for the previously described monoexponential fluorescence decay. Unexpectedly, the carboxyl group of H148D is found in a buried position, directly contacting the indole nitrogen of the chromophore via a bifurcated hydrogen bond. Compared to the similarly constructed ECFP chromophore, the indole group of Cerulean is rotated around the methylene bridge to adopt a cis-coplanar conformation with respect to the imidazolinone ring, resulting in a close edge-to-edge contact of the two ring systems. The double-humped absorbance spectrum persists in single-crystal absorbance measurements, casting doubt on the idea that ground state conformational heterogeneity forms the basis of the two overlapping transitions. At low pH, a blue shift in absorbance of 10−15 nm suggests a pH-induced structural transition that proceeds with a time constant of 47 (±2) min and is reversible. Possible interpretations in terms of chromophore isomerization are presented.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Crystallization</subject><subject>Crystallography, X-Ray</subject><subject>Directed Molecular Evolution - methods</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Histidine - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen-Ion Concentration</subject><subject>Imidazoles - chemistry</subject><subject>Indicators and Reagents</subject><subject>Microscopy, Fluorescence, Multiphoton - instrumentation</subject><subject>Microscopy, Fluorescence, Multiphoton - methods</subject><subject>Models, Molecular</subject><subject>Photoreceptors, Microbial</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Recombinant Proteins</subject><subject>Tryptophan - chemistry</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1v1DAQhi0EokvhwB9AvoDEIWA7_ki4tRFpK61Epd1KvVm2M27T5mOxY4m9ceVv8ksw2lW5cBrNO8_MvHoRekvJJ0oY_Wx7SZiU3D1DKyoYKXhdi-doRQiRBaslOUGvYnzILSeKv0QnVMlKCMFX6PG2CGaPN0tIbkkB8OxxAyENYCZ80V5_-f3zFz7D27DfLfPu3kzFuYnQ4eY-zGMW5rxyE8GnAfs54HZIWYkOJgd43XtY-hHw1Wju-unuNXrhzRDhzbGeopv267a5LNbfLq6as3VhOFVLNu-NtV1JqeyIBw7C11yVTnXC1oYZ6hQIVjFbVa60pLaOidrLjgnrvDK2PEUfDnd3Yf6eIC567LOlYTATzClqWTEiFOcZ_HgAXZhjDOD1LvSjCXtNif6brH5KNrPvjkeTHaH7Rx6jzEBxAPq4wI-nuQmPWqpSCb293uhNe9teEnGum8y_P_DGRf0wpzDlTP7z-A9l-5BI</recordid><startdate>20070904</startdate><enddate>20070904</enddate><creator>Malo, Gabrielle D</creator><creator>Pouwels, Lauren J</creator><creator>Wang, Meitian</creator><creator>Weichsel, Andrzej</creator><creator>Montfort, William R</creator><creator>Rizzo, Mark A</creator><creator>Piston, David W</creator><creator>Wachter, Rebekka M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070904</creationdate><title>X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging</title><author>Malo, Gabrielle D ; Pouwels, Lauren J ; Wang, Meitian ; Weichsel, Andrzej ; Montfort, William R ; Rizzo, Mark A ; Piston, David W ; Wachter, Rebekka M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-49fabbd3116d0fe4e5f9473c7d5b9a2a1c7e5282b88c3b09bc259f6d25bcf7ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Crystallization</topic><topic>Crystallography, X-Ray</topic><topic>Directed Molecular Evolution - methods</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Histidine - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen-Ion Concentration</topic><topic>Imidazoles - chemistry</topic><topic>Indicators and Reagents</topic><topic>Microscopy, Fluorescence, Multiphoton - instrumentation</topic><topic>Microscopy, Fluorescence, Multiphoton - methods</topic><topic>Models, Molecular</topic><topic>Photoreceptors, Microbial</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Recombinant Proteins</topic><topic>Tryptophan - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malo, Gabrielle D</creatorcontrib><creatorcontrib>Pouwels, Lauren J</creatorcontrib><creatorcontrib>Wang, Meitian</creatorcontrib><creatorcontrib>Weichsel, Andrzej</creatorcontrib><creatorcontrib>Montfort, William R</creatorcontrib><creatorcontrib>Rizzo, Mark A</creatorcontrib><creatorcontrib>Piston, David W</creatorcontrib><creatorcontrib>Wachter, Rebekka M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malo, Gabrielle D</au><au>Pouwels, Lauren J</au><au>Wang, Meitian</au><au>Weichsel, Andrzej</au><au>Montfort, William R</au><au>Rizzo, Mark A</au><au>Piston, David W</au><au>Wachter, Rebekka M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2007-09-04</date><risdate>2007</risdate><volume>46</volume><issue>35</issue><spage>9865</spage><epage>9873</epage><pages>9865-9873</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The crystal structure of the cyan-fluorescent Cerulean green fluorescent protein (GFP), a variant of enhanced cyan fluorescent protein (ECFP), has been determined to 2.0 Å. Cerulean bears an internal fluorophore composed of an indole moiety derived from Y66W, conjugated to the GFP-like imidazolinone ring via a methylene bridge. Cerulean undergoes highly efficient fluorescence resonance energy transfer (FRET) to yellow acceptor molecules and exhibits significantly reduced excited-state heterogeneity. This feature was rationally engineered in ECFP by substituting His148 with an aspartic acid [Rizzo et al. (2004) Nat. Biotechnol. 22, 445], rendering Cerulean useful for fluorescence lifetime imaging microscopy (FLIM). The X-ray structure is consistent with a single conformation of the chromophore and surrounding residues and may therefore provide a structural rationale for the previously described monoexponential fluorescence decay. Unexpectedly, the carboxyl group of H148D is found in a buried position, directly contacting the indole nitrogen of the chromophore via a bifurcated hydrogen bond. Compared to the similarly constructed ECFP chromophore, the indole group of Cerulean is rotated around the methylene bridge to adopt a cis-coplanar conformation with respect to the imidazolinone ring, resulting in a close edge-to-edge contact of the two ring systems. The double-humped absorbance spectrum persists in single-crystal absorbance measurements, casting doubt on the idea that ground state conformational heterogeneity forms the basis of the two overlapping transitions. At low pH, a blue shift in absorbance of 10−15 nm suggests a pH-induced structural transition that proceeds with a time constant of 47 (±2) min and is reversible. Possible interpretations in terms of chromophore isomerization are presented.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17685554</pmid><doi>10.1021/bi602664c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2007-09, Vol.46 (35), p.9865-9873
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_68205744
source MEDLINE; American Chemical Society Journals
subjects Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Crystallization
Crystallography, X-Ray
Directed Molecular Evolution - methods
Fluorescence Resonance Energy Transfer - methods
Fluorescent Dyes - chemistry
Green Fluorescent Proteins - chemistry
Green Fluorescent Proteins - metabolism
Histidine - chemistry
Hydrogen Bonding
Hydrogen-Ion Concentration
Imidazoles - chemistry
Indicators and Reagents
Microscopy, Fluorescence, Multiphoton - instrumentation
Microscopy, Fluorescence, Multiphoton - methods
Models, Molecular
Photoreceptors, Microbial
Protein Conformation
Protein Engineering
Recombinant Proteins
Tryptophan - chemistry
title X-ray Structure of Cerulean GFP:  A Tryptophan-Based Chromophore Useful for Fluorescence Lifetime Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T13%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20Structure%20of%20Cerulean%20GFP:%E2%80%89%20A%20Tryptophan-Based%20Chromophore%20Useful%20for%20Fluorescence%20Lifetime%20Imaging&rft.jtitle=Biochemistry%20(Easton)&rft.au=Malo,%20Gabrielle%20D&rft.date=2007-09-04&rft.volume=46&rft.issue=35&rft.spage=9865&rft.epage=9873&rft.pages=9865-9873&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi602664c&rft_dat=%3Cproquest_cross%3E68205744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68205744&rft_id=info:pmid/17685554&rfr_iscdi=true