Analysis of responses in migraine modelling using hidden Markov models
Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presen...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2007-09, Vol.26 (22), p.4163-4178 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4178 |
---|---|
container_issue | 22 |
container_start_page | 4163 |
container_title | Statistics in medicine |
container_volume | 26 |
creator | Anisimov, Vladimir V. Maas, Hugo J. Danhof, Meindert Della Pasqua, Oscar |
description | Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.2852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68194567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68194567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</originalsourceid><addsrcrecordid>eNp10E9LwzAYBvAgiptT8BNI8SBeqkmaNO1Rh1NxmwcVjyFr32pm_8y8q7pvb8aKguAlOeSXh_d9CDlk9IxRys_RVmc8kXyL9BlNVUi5TLZJn3Klwlgx2SN7iHNKGZNc7ZIeU1EiWaL6ZHRRm3KFFoOmCBzgoqkRMLB1UNkXZ2wNQdXkUJa2fglaXJ-vNs-hDibGvTUfm1fcJzuFKREOuntAnkZXj8ObcHx_fTu8GIdZlAgeSip4xKOZkpAKI2SRQw5SiEzEjGUml0WWFhwUT2fcGIgzyuhMiQhilkeZ_zkgJ5vchWveW8ClrixmfjxTQ9OijhOWChkrD4__wHnTOr8ras4jJjySHp1uUOYaRAeFXjhbGbfSjOp1sdoXq9fFenrU5bWzCvJf2DXpQbgBn7aE1b9B-uF20gV23uISvn68L1X78ZXUz9NrfanU3XgySvQ0-gZJi4_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223144565</pqid></control><display><type>article</type><title>Analysis of responses in migraine modelling using hidden Markov models</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Anisimov, Vladimir V. ; Maas, Hugo J. ; Danhof, Meindert ; Della Pasqua, Oscar</creator><creatorcontrib>Anisimov, Vladimir V. ; Maas, Hugo J. ; Danhof, Meindert ; Della Pasqua, Oscar</creatorcontrib><description>Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.2852</identifier><identifier>PMID: 17385187</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Biometry ; Clinical Trials as Topic ; Confidence Intervals ; hidden Markov model ; Humans ; Markov analysis ; Markov Chains ; Medical statistics ; Migraine ; Migraine Disorders - classification ; Migraine Disorders - physiopathology ; migraine headache ; Pain - drug therapy ; Pain management ; pain relief ; Pathology ; pkpd modelling ; Sumatriptan - therapeutic use</subject><ispartof>Statistics in medicine, 2007-09, Vol.26 (22), p.4163-4178</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Sep 30, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</citedby><cites>FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.2852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.2852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17385187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anisimov, Vladimir V.</creatorcontrib><creatorcontrib>Maas, Hugo J.</creatorcontrib><creatorcontrib>Danhof, Meindert</creatorcontrib><creatorcontrib>Della Pasqua, Oscar</creatorcontrib><title>Analysis of responses in migraine modelling using hidden Markov models</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>Biometry</subject><subject>Clinical Trials as Topic</subject><subject>Confidence Intervals</subject><subject>hidden Markov model</subject><subject>Humans</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Medical statistics</subject><subject>Migraine</subject><subject>Migraine Disorders - classification</subject><subject>Migraine Disorders - physiopathology</subject><subject>migraine headache</subject><subject>Pain - drug therapy</subject><subject>Pain management</subject><subject>pain relief</subject><subject>Pathology</subject><subject>pkpd modelling</subject><subject>Sumatriptan - therapeutic use</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E9LwzAYBvAgiptT8BNI8SBeqkmaNO1Rh1NxmwcVjyFr32pm_8y8q7pvb8aKguAlOeSXh_d9CDlk9IxRys_RVmc8kXyL9BlNVUi5TLZJn3Klwlgx2SN7iHNKGZNc7ZIeU1EiWaL6ZHRRm3KFFoOmCBzgoqkRMLB1UNkXZ2wNQdXkUJa2fglaXJ-vNs-hDibGvTUfm1fcJzuFKREOuntAnkZXj8ObcHx_fTu8GIdZlAgeSip4xKOZkpAKI2SRQw5SiEzEjGUml0WWFhwUT2fcGIgzyuhMiQhilkeZ_zkgJ5vchWveW8ClrixmfjxTQ9OijhOWChkrD4__wHnTOr8ras4jJjySHp1uUOYaRAeFXjhbGbfSjOp1sdoXq9fFenrU5bWzCvJf2DXpQbgBn7aE1b9B-uF20gV23uISvn68L1X78ZXUz9NrfanU3XgySvQ0-gZJi4_1</recordid><startdate>20070930</startdate><enddate>20070930</enddate><creator>Anisimov, Vladimir V.</creator><creator>Maas, Hugo J.</creator><creator>Danhof, Meindert</creator><creator>Della Pasqua, Oscar</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20070930</creationdate><title>Analysis of responses in migraine modelling using hidden Markov models</title><author>Anisimov, Vladimir V. ; Maas, Hugo J. ; Danhof, Meindert ; Della Pasqua, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biometry</topic><topic>Clinical Trials as Topic</topic><topic>Confidence Intervals</topic><topic>hidden Markov model</topic><topic>Humans</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Medical statistics</topic><topic>Migraine</topic><topic>Migraine Disorders - classification</topic><topic>Migraine Disorders - physiopathology</topic><topic>migraine headache</topic><topic>Pain - drug therapy</topic><topic>Pain management</topic><topic>pain relief</topic><topic>Pathology</topic><topic>pkpd modelling</topic><topic>Sumatriptan - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anisimov, Vladimir V.</creatorcontrib><creatorcontrib>Maas, Hugo J.</creatorcontrib><creatorcontrib>Danhof, Meindert</creatorcontrib><creatorcontrib>Della Pasqua, Oscar</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anisimov, Vladimir V.</au><au>Maas, Hugo J.</au><au>Danhof, Meindert</au><au>Della Pasqua, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of responses in migraine modelling using hidden Markov models</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2007-09-30</date><risdate>2007</risdate><volume>26</volume><issue>22</issue><spage>4163</spage><epage>4178</epage><pages>4163-4178</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>17385187</pmid><doi>10.1002/sim.2852</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2007-09, Vol.26 (22), p.4163-4178 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_68194567 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biometry Clinical Trials as Topic Confidence Intervals hidden Markov model Humans Markov analysis Markov Chains Medical statistics Migraine Migraine Disorders - classification Migraine Disorders - physiopathology migraine headache Pain - drug therapy Pain management pain relief Pathology pkpd modelling Sumatriptan - therapeutic use |
title | Analysis of responses in migraine modelling using hidden Markov models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20responses%20in%20migraine%20modelling%20using%20hidden%20Markov%20models&rft.jtitle=Statistics%20in%20medicine&rft.au=Anisimov,%20Vladimir%20V.&rft.date=2007-09-30&rft.volume=26&rft.issue=22&rft.spage=4163&rft.epage=4178&rft.pages=4163-4178&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.2852&rft_dat=%3Cproquest_cross%3E68194567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223144565&rft_id=info:pmid/17385187&rfr_iscdi=true |