Analysis of responses in migraine modelling using hidden Markov models

Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2007-09, Vol.26 (22), p.4163-4178
Hauptverfasser: Anisimov, Vladimir V., Maas, Hugo J., Danhof, Meindert, Della Pasqua, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4178
container_issue 22
container_start_page 4163
container_title Statistics in medicine
container_volume 26
creator Anisimov, Vladimir V.
Maas, Hugo J.
Danhof, Meindert
Della Pasqua, Oscar
description Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sim.2852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68194567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68194567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</originalsourceid><addsrcrecordid>eNp10E9LwzAYBvAgiptT8BNI8SBeqkmaNO1Rh1NxmwcVjyFr32pm_8y8q7pvb8aKguAlOeSXh_d9CDlk9IxRys_RVmc8kXyL9BlNVUi5TLZJn3Klwlgx2SN7iHNKGZNc7ZIeU1EiWaL6ZHRRm3KFFoOmCBzgoqkRMLB1UNkXZ2wNQdXkUJa2fglaXJ-vNs-hDibGvTUfm1fcJzuFKREOuntAnkZXj8ObcHx_fTu8GIdZlAgeSip4xKOZkpAKI2SRQw5SiEzEjGUml0WWFhwUT2fcGIgzyuhMiQhilkeZ_zkgJ5vchWveW8ClrixmfjxTQ9OijhOWChkrD4__wHnTOr8ras4jJjySHp1uUOYaRAeFXjhbGbfSjOp1sdoXq9fFenrU5bWzCvJf2DXpQbgBn7aE1b9B-uF20gV23uISvn68L1X78ZXUz9NrfanU3XgySvQ0-gZJi4_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223144565</pqid></control><display><type>article</type><title>Analysis of responses in migraine modelling using hidden Markov models</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Anisimov, Vladimir V. ; Maas, Hugo J. ; Danhof, Meindert ; Della Pasqua, Oscar</creator><creatorcontrib>Anisimov, Vladimir V. ; Maas, Hugo J. ; Danhof, Meindert ; Della Pasqua, Oscar</creatorcontrib><description>Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.2852</identifier><identifier>PMID: 17385187</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Biometry ; Clinical Trials as Topic ; Confidence Intervals ; hidden Markov model ; Humans ; Markov analysis ; Markov Chains ; Medical statistics ; Migraine ; Migraine Disorders - classification ; Migraine Disorders - physiopathology ; migraine headache ; Pain - drug therapy ; Pain management ; pain relief ; Pathology ; pkpd modelling ; Sumatriptan - therapeutic use</subject><ispartof>Statistics in medicine, 2007-09, Vol.26 (22), p.4163-4178</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright John Wiley and Sons, Limited Sep 30, 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</citedby><cites>FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.2852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.2852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17385187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anisimov, Vladimir V.</creatorcontrib><creatorcontrib>Maas, Hugo J.</creatorcontrib><creatorcontrib>Danhof, Meindert</creatorcontrib><creatorcontrib>Della Pasqua, Oscar</creatorcontrib><title>Analysis of responses in migraine modelling using hidden Markov models</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>Biometry</subject><subject>Clinical Trials as Topic</subject><subject>Confidence Intervals</subject><subject>hidden Markov model</subject><subject>Humans</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Medical statistics</subject><subject>Migraine</subject><subject>Migraine Disorders - classification</subject><subject>Migraine Disorders - physiopathology</subject><subject>migraine headache</subject><subject>Pain - drug therapy</subject><subject>Pain management</subject><subject>pain relief</subject><subject>Pathology</subject><subject>pkpd modelling</subject><subject>Sumatriptan - therapeutic use</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E9LwzAYBvAgiptT8BNI8SBeqkmaNO1Rh1NxmwcVjyFr32pm_8y8q7pvb8aKguAlOeSXh_d9CDlk9IxRys_RVmc8kXyL9BlNVUi5TLZJn3Klwlgx2SN7iHNKGZNc7ZIeU1EiWaL6ZHRRm3KFFoOmCBzgoqkRMLB1UNkXZ2wNQdXkUJa2fglaXJ-vNs-hDibGvTUfm1fcJzuFKREOuntAnkZXj8ObcHx_fTu8GIdZlAgeSip4xKOZkpAKI2SRQw5SiEzEjGUml0WWFhwUT2fcGIgzyuhMiQhilkeZ_zkgJ5vchWveW8ClrixmfjxTQ9OijhOWChkrD4__wHnTOr8ras4jJjySHp1uUOYaRAeFXjhbGbfSjOp1sdoXq9fFenrU5bWzCvJf2DXpQbgBn7aE1b9B-uF20gV23uISvn68L1X78ZXUz9NrfanU3XgySvQ0-gZJi4_1</recordid><startdate>20070930</startdate><enddate>20070930</enddate><creator>Anisimov, Vladimir V.</creator><creator>Maas, Hugo J.</creator><creator>Danhof, Meindert</creator><creator>Della Pasqua, Oscar</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20070930</creationdate><title>Analysis of responses in migraine modelling using hidden Markov models</title><author>Anisimov, Vladimir V. ; Maas, Hugo J. ; Danhof, Meindert ; Della Pasqua, Oscar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3842-5042323b75e94a45fdede544c4611cad5fc9f2e729b2aae6c010b743e61d3c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biometry</topic><topic>Clinical Trials as Topic</topic><topic>Confidence Intervals</topic><topic>hidden Markov model</topic><topic>Humans</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Medical statistics</topic><topic>Migraine</topic><topic>Migraine Disorders - classification</topic><topic>Migraine Disorders - physiopathology</topic><topic>migraine headache</topic><topic>Pain - drug therapy</topic><topic>Pain management</topic><topic>pain relief</topic><topic>Pathology</topic><topic>pkpd modelling</topic><topic>Sumatriptan - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anisimov, Vladimir V.</creatorcontrib><creatorcontrib>Maas, Hugo J.</creatorcontrib><creatorcontrib>Danhof, Meindert</creatorcontrib><creatorcontrib>Della Pasqua, Oscar</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anisimov, Vladimir V.</au><au>Maas, Hugo J.</au><au>Danhof, Meindert</au><au>Della Pasqua, Oscar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of responses in migraine modelling using hidden Markov models</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2007-09-30</date><risdate>2007</risdate><volume>26</volume><issue>22</issue><spage>4163</spage><epage>4178</epage><pages>4163-4178</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Markov‐type models have been used in the analysis of disease progression. Although standard errors of model parameters are usually estimated, available software often does not permit the construction of confidence intervals around predictions of the dependent or response variable. A method is presented to calculate means and confidence intervals of model‐predicted responses in time governed by a non‐homogeneous hidden Markov model in continuous time. The Kolmogorov equations serve as the basis for the calculations. The method is realised in S‐Plus and is applied to the prediction of headache responses in clinical studies of anti‐migraine treatment. Means and confidence intervals are calculated by numerically solving differential equations that are non‐linear in the explanatory variable. Results indicate that uncertainty on predicted drug responses is larger than that on predicted placebo responses and that pain‐free responses are less precisely predicted than pain‐relief responses. This is due to the uncertainty in the drug‐specific parameters which is not present in predicted placebo responses. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>17385187</pmid><doi>10.1002/sim.2852</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2007-09, Vol.26 (22), p.4163-4178
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_68194567
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biometry
Clinical Trials as Topic
Confidence Intervals
hidden Markov model
Humans
Markov analysis
Markov Chains
Medical statistics
Migraine
Migraine Disorders - classification
Migraine Disorders - physiopathology
migraine headache
Pain - drug therapy
Pain management
pain relief
Pathology
pkpd modelling
Sumatriptan - therapeutic use
title Analysis of responses in migraine modelling using hidden Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A51%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20responses%20in%20migraine%20modelling%20using%20hidden%20Markov%20models&rft.jtitle=Statistics%20in%20medicine&rft.au=Anisimov,%20Vladimir%20V.&rft.date=2007-09-30&rft.volume=26&rft.issue=22&rft.spage=4163&rft.epage=4178&rft.pages=4163-4178&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.2852&rft_dat=%3Cproquest_cross%3E68194567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223144565&rft_id=info:pmid/17385187&rfr_iscdi=true