The Werner and Bloom Syndrome Proteins Catalyze Regression of a Model Replication Fork

The premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2006-11, Vol.45 (47), p.13939-13946
Hauptverfasser: Machwe, Amrita, Xiao, Liren, Groden, Joanna, Orren, David K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13946
container_issue 47
container_start_page 13939
container_title Biochemistry (Easton)
container_volume 45
creator Machwe, Amrita
Xiao, Liren
Groden, Joanna
Orren, David K
description The premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these proteins might participate in resolution of replication blockage. Although WRN and BLM are helicases belonging to the RecQ family, both have been recently shown to also facilitate pairing of complementary DNA strands. In this study, we demonstrate that both WRN and BLM (but not other selected helicases) can coordinate their unwinding and pairing activities to regress a model replication fork substrate. Notably, fork regression is widely believed to be the initial step in responding to replication blockage. Our findings suggest that WRN and/or BLM might regress replication forks in vivo as part of a genome maintenance pathway, consistent with the phenotypes of WRN- and BLM-deficient cells.
doi_str_mv 10.1021/bi0615487
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68173928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68173928</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-a46da9aa797ce89d4b00da9ea3cc757cb01527f1bb9b149714ed9766cdac60263</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvJY8APIG5BYBOzEseMllLd4qS2UneU4UwgkcbFTifL1uGpVNkhsZjR3ju5oLkK7lBxREtPjvCScpiwTK6hD05hETMp0FXUIITyKJScbaNP79zAyItg62qCC0pRnWQc9D94AD8E14LBuCnxaWVvj_rQpnK0BPzrbQtl43NWtrqbfgHvw6sD70jbYjrDGd7aAKqjjqjS6nckX1n1so7WRrjzsLPoWero4H3SvotuHy-vuyW2kGcvaUHmhpdZCCgOZLFhOSBBAJ8aIVJichHfEiOa5zCmTgjIopODcFNpwEvNkCx3MfcfOfk7At6ouvYGq0g3YiVc8oyKRcfYvGJMklimdOR7OQeOs9w5GauzKWrupokTN0lbLtAO7tzCd5DUUv-Qi3gBEc6D0LXwt99p9KC4SkarBY1-dnt1I0hu-qPvA7895bbx6txPXhPD-OPwD62SUew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20329516</pqid></control><display><type>article</type><title>The Werner and Bloom Syndrome Proteins Catalyze Regression of a Model Replication Fork</title><source>MEDLINE</source><source>ACS Publications</source><creator>Machwe, Amrita ; Xiao, Liren ; Groden, Joanna ; Orren, David K</creator><creatorcontrib>Machwe, Amrita ; Xiao, Liren ; Groden, Joanna ; Orren, David K</creatorcontrib><description>The premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these proteins might participate in resolution of replication blockage. Although WRN and BLM are helicases belonging to the RecQ family, both have been recently shown to also facilitate pairing of complementary DNA strands. In this study, we demonstrate that both WRN and BLM (but not other selected helicases) can coordinate their unwinding and pairing activities to regress a model replication fork substrate. Notably, fork regression is widely believed to be the initial step in responding to replication blockage. Our findings suggest that WRN and/or BLM might regress replication forks in vivo as part of a genome maintenance pathway, consistent with the phenotypes of WRN- and BLM-deficient cells.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi0615487</identifier><identifier>PMID: 17115688</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenosine Triphosphatases - metabolism ; Adenosine Triphosphatases - physiology ; Base Sequence ; Catalysis ; DNA Damage ; DNA Helicases - metabolism ; DNA Helicases - physiology ; DNA Primers ; DNA Replication - physiology ; Exodeoxyribonucleases ; Humans ; RecQ Helicases - metabolism ; RecQ Helicases - physiology ; Werner Syndrome Helicase</subject><ispartof>Biochemistry (Easton), 2006-11, Vol.45 (47), p.13939-13946</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-a46da9aa797ce89d4b00da9ea3cc757cb01527f1bb9b149714ed9766cdac60263</citedby><cites>FETCH-LOGICAL-a448t-a46da9aa797ce89d4b00da9ea3cc757cb01527f1bb9b149714ed9766cdac60263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi0615487$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi0615487$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17115688$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machwe, Amrita</creatorcontrib><creatorcontrib>Xiao, Liren</creatorcontrib><creatorcontrib>Groden, Joanna</creatorcontrib><creatorcontrib>Orren, David K</creatorcontrib><title>The Werner and Bloom Syndrome Proteins Catalyze Regression of a Model Replication Fork</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these proteins might participate in resolution of replication blockage. Although WRN and BLM are helicases belonging to the RecQ family, both have been recently shown to also facilitate pairing of complementary DNA strands. In this study, we demonstrate that both WRN and BLM (but not other selected helicases) can coordinate their unwinding and pairing activities to regress a model replication fork substrate. Notably, fork regression is widely believed to be the initial step in responding to replication blockage. Our findings suggest that WRN and/or BLM might regress replication forks in vivo as part of a genome maintenance pathway, consistent with the phenotypes of WRN- and BLM-deficient cells.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Adenosine Triphosphatases - physiology</subject><subject>Base Sequence</subject><subject>Catalysis</subject><subject>DNA Damage</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Helicases - physiology</subject><subject>DNA Primers</subject><subject>DNA Replication - physiology</subject><subject>Exodeoxyribonucleases</subject><subject>Humans</subject><subject>RecQ Helicases - metabolism</subject><subject>RecQ Helicases - physiology</subject><subject>Werner Syndrome Helicase</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EgvJY8APIG5BYBOzEseMllLd4qS2UneU4UwgkcbFTifL1uGpVNkhsZjR3ju5oLkK7lBxREtPjvCScpiwTK6hD05hETMp0FXUIITyKJScbaNP79zAyItg62qCC0pRnWQc9D94AD8E14LBuCnxaWVvj_rQpnK0BPzrbQtl43NWtrqbfgHvw6sD70jbYjrDGd7aAKqjjqjS6nckX1n1so7WRrjzsLPoWero4H3SvotuHy-vuyW2kGcvaUHmhpdZCCgOZLFhOSBBAJ8aIVJichHfEiOa5zCmTgjIopODcFNpwEvNkCx3MfcfOfk7At6ouvYGq0g3YiVc8oyKRcfYvGJMklimdOR7OQeOs9w5GauzKWrupokTN0lbLtAO7tzCd5DUUv-Qi3gBEc6D0LXwt99p9KC4SkarBY1-dnt1I0hu-qPvA7895bbx6txPXhPD-OPwD62SUew</recordid><startdate>20061128</startdate><enddate>20061128</enddate><creator>Machwe, Amrita</creator><creator>Xiao, Liren</creator><creator>Groden, Joanna</creator><creator>Orren, David K</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>20061128</creationdate><title>The Werner and Bloom Syndrome Proteins Catalyze Regression of a Model Replication Fork</title><author>Machwe, Amrita ; Xiao, Liren ; Groden, Joanna ; Orren, David K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-a46da9aa797ce89d4b00da9ea3cc757cb01527f1bb9b149714ed9766cdac60263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Adenosine Triphosphatases - physiology</topic><topic>Base Sequence</topic><topic>Catalysis</topic><topic>DNA Damage</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Helicases - physiology</topic><topic>DNA Primers</topic><topic>DNA Replication - physiology</topic><topic>Exodeoxyribonucleases</topic><topic>Humans</topic><topic>RecQ Helicases - metabolism</topic><topic>RecQ Helicases - physiology</topic><topic>Werner Syndrome Helicase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machwe, Amrita</creatorcontrib><creatorcontrib>Xiao, Liren</creatorcontrib><creatorcontrib>Groden, Joanna</creatorcontrib><creatorcontrib>Orren, David K</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machwe, Amrita</au><au>Xiao, Liren</au><au>Groden, Joanna</au><au>Orren, David K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Werner and Bloom Syndrome Proteins Catalyze Regression of a Model Replication Fork</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2006-11-28</date><risdate>2006</risdate><volume>45</volume><issue>47</issue><spage>13939</spage><epage>13946</epage><pages>13939-13946</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these proteins might participate in resolution of replication blockage. Although WRN and BLM are helicases belonging to the RecQ family, both have been recently shown to also facilitate pairing of complementary DNA strands. In this study, we demonstrate that both WRN and BLM (but not other selected helicases) can coordinate their unwinding and pairing activities to regress a model replication fork substrate. Notably, fork regression is widely believed to be the initial step in responding to replication blockage. Our findings suggest that WRN and/or BLM might regress replication forks in vivo as part of a genome maintenance pathway, consistent with the phenotypes of WRN- and BLM-deficient cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17115688</pmid><doi>10.1021/bi0615487</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2006-11, Vol.45 (47), p.13939-13946
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_68173928
source MEDLINE; ACS Publications
subjects Adenosine Triphosphatases - metabolism
Adenosine Triphosphatases - physiology
Base Sequence
Catalysis
DNA Damage
DNA Helicases - metabolism
DNA Helicases - physiology
DNA Primers
DNA Replication - physiology
Exodeoxyribonucleases
Humans
RecQ Helicases - metabolism
RecQ Helicases - physiology
Werner Syndrome Helicase
title The Werner and Bloom Syndrome Proteins Catalyze Regression of a Model Replication Fork
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Werner%20and%20Bloom%20Syndrome%20Proteins%20Catalyze%20Regression%20of%20a%20Model%20Replication%20Fork&rft.jtitle=Biochemistry%20(Easton)&rft.au=Machwe,%20Amrita&rft.date=2006-11-28&rft.volume=45&rft.issue=47&rft.spage=13939&rft.epage=13946&rft.pages=13939-13946&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi0615487&rft_dat=%3Cproquest_cross%3E68173928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20329516&rft_id=info:pmid/17115688&rfr_iscdi=true