Microfabrication of Three-Dimensional Engineered Scaffolds
One of the principal challenges facing the field of tissue engineering over the past 2 decades has been the requirement for large-scale engineered constructs comprising precisely organized cellular microenvironments. For vital organ assist and replacement devices, microfluidic-based systems such as...
Gespeichert in:
Veröffentlicht in: | Tissue engineering 2007-08, Vol.13 (8), p.1837-1844 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1844 |
---|---|
container_issue | 8 |
container_start_page | 1837 |
container_title | Tissue engineering |
container_volume | 13 |
creator | Borenstein, Jeffrey T. Weinberg, Eli J. Orrick, Brian K. Sundback, Cathryn Kaazempur-Mofrad, Mohammad R. Vacanti, Joseph P. |
description | One of the principal challenges facing the field of tissue engineering over the past 2 decades has been the requirement for large-scale engineered constructs comprising precisely organized cellular microenvironments. For vital organ assist and replacement devices, microfluidic-based systems such as the microcirculation, biliary, or renal filtration and resorption systems and other functional elements containing multiple cell types must be generated to provide for viable engineered tissues and clinical benefit. Over the last several years, microfabrication technology has emerged as a versatile and powerful approach for generating precisely engineered scaffolds for engineered tissues. Fabrication process tools such as photolithography, etching, molding, and lamination have been established for applications involving a range of biocompatible and biodegradable polymeric scaffolding materials. Computational fluid dynamic designs have been used to generate scaffold designs suitable for microvasculature and a number of organ-specific constructs; these designs have been translated into 3-dimensional scaffolding using microfabrication processes. Here a brief overview of the fundamental microfabrication technologies used for tissue engineering will be presented, along with a summary of progress in a number of applications, including the liver and kidney. |
doi_str_mv | 10.1089/ten.2006.0156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68170581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20649309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-ce9999edbe484f40c7484337a1c44faf41171bf76feb02df8b1f527b150e827e3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK0evUrw4C11NtmPrDep9QMqHqznsNnMako-6m5y8N-7oQXBS-cyw8vDC_MQcklhTiFTtz228wRAzIFycUSmlHMZZ0LBcbhBijhNpJqQM-83AMA5ladkQiVXQJmakrvXyrjO6sJVRvdV10adjdZfDjF-qBpsfYh0HS3bz6pFdFhG70Zb29WlPycnVtceL_Z7Rj4el-vFc7x6e3pZ3K9iw7jqY4MqDJYFsoxZBkaGnaZSU8OY1ZZRKmlhpbBYQFLarKCWJ7KgHDBLJKYzcrPr3brue0Df503lDda1brEbfC4yKoFn9CCYgGAqBRXA63_gphtc-DMwwSIoKUSA4h0U_Hjv0OZbVzXa_eQU8lF9HtTno_p8VB_4q33pUDRY_tF71wFId8AY67atKyzQ9QdqfwF_JY8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215609766</pqid></control><display><type>article</type><title>Microfabrication of Three-Dimensional Engineered Scaffolds</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><creator>Borenstein, Jeffrey T. ; Weinberg, Eli J. ; Orrick, Brian K. ; Sundback, Cathryn ; Kaazempur-Mofrad, Mohammad R. ; Vacanti, Joseph P.</creator><creatorcontrib>Borenstein, Jeffrey T. ; Weinberg, Eli J. ; Orrick, Brian K. ; Sundback, Cathryn ; Kaazempur-Mofrad, Mohammad R. ; Vacanti, Joseph P.</creatorcontrib><description>One of the principal challenges facing the field of tissue engineering over the past 2 decades has been the requirement for large-scale engineered constructs comprising precisely organized cellular microenvironments. For vital organ assist and replacement devices, microfluidic-based systems such as the microcirculation, biliary, or renal filtration and resorption systems and other functional elements containing multiple cell types must be generated to provide for viable engineered tissues and clinical benefit. Over the last several years, microfabrication technology has emerged as a versatile and powerful approach for generating precisely engineered scaffolds for engineered tissues. Fabrication process tools such as photolithography, etching, molding, and lamination have been established for applications involving a range of biocompatible and biodegradable polymeric scaffolding materials. Computational fluid dynamic designs have been used to generate scaffold designs suitable for microvasculature and a number of organ-specific constructs; these designs have been translated into 3-dimensional scaffolding using microfabrication processes. Here a brief overview of the fundamental microfabrication technologies used for tissue engineering will be presented, along with a summary of progress in a number of applications, including the liver and kidney.</description><identifier>ISSN: 1076-3279</identifier><identifier>EISSN: 1557-8690</identifier><identifier>DOI: 10.1089/ten.2006.0156</identifier><identifier>PMID: 17590149</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biocompatible Materials - chemical synthesis ; Biomedical materials ; Humans ; Mechanical engineering ; Miniaturization ; Review ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods</subject><ispartof>Tissue engineering, 2007-08, Vol.13 (8), p.1837-1844</ispartof><rights>2007, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2007, Mary Ann Liebert, Inc.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-ce9999edbe484f40c7484337a1c44faf41171bf76feb02df8b1f527b150e827e3</citedby><cites>FETCH-LOGICAL-c459t-ce9999edbe484f40c7484337a1c44faf41171bf76feb02df8b1f527b150e827e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.2006.0156$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.2006.0156$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,780,784,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17590149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borenstein, Jeffrey T.</creatorcontrib><creatorcontrib>Weinberg, Eli J.</creatorcontrib><creatorcontrib>Orrick, Brian K.</creatorcontrib><creatorcontrib>Sundback, Cathryn</creatorcontrib><creatorcontrib>Kaazempur-Mofrad, Mohammad R.</creatorcontrib><creatorcontrib>Vacanti, Joseph P.</creatorcontrib><title>Microfabrication of Three-Dimensional Engineered Scaffolds</title><title>Tissue engineering</title><addtitle>Tissue Eng</addtitle><description>One of the principal challenges facing the field of tissue engineering over the past 2 decades has been the requirement for large-scale engineered constructs comprising precisely organized cellular microenvironments. For vital organ assist and replacement devices, microfluidic-based systems such as the microcirculation, biliary, or renal filtration and resorption systems and other functional elements containing multiple cell types must be generated to provide for viable engineered tissues and clinical benefit. Over the last several years, microfabrication technology has emerged as a versatile and powerful approach for generating precisely engineered scaffolds for engineered tissues. Fabrication process tools such as photolithography, etching, molding, and lamination have been established for applications involving a range of biocompatible and biodegradable polymeric scaffolding materials. Computational fluid dynamic designs have been used to generate scaffold designs suitable for microvasculature and a number of organ-specific constructs; these designs have been translated into 3-dimensional scaffolding using microfabrication processes. Here a brief overview of the fundamental microfabrication technologies used for tissue engineering will be presented, along with a summary of progress in a number of applications, including the liver and kidney.</description><subject>Animals</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biomedical materials</subject><subject>Humans</subject><subject>Mechanical engineering</subject><subject>Miniaturization</subject><subject>Review</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><issn>1076-3279</issn><issn>1557-8690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1Lw0AQhhdRbK0evUrw4C11NtmPrDep9QMqHqznsNnMako-6m5y8N-7oQXBS-cyw8vDC_MQcklhTiFTtz228wRAzIFycUSmlHMZZ0LBcbhBijhNpJqQM-83AMA5ladkQiVXQJmakrvXyrjO6sJVRvdV10adjdZfDjF-qBpsfYh0HS3bz6pFdFhG70Zb29WlPycnVtceL_Z7Rj4el-vFc7x6e3pZ3K9iw7jqY4MqDJYFsoxZBkaGnaZSU8OY1ZZRKmlhpbBYQFLarKCWJ7KgHDBLJKYzcrPr3brue0Df503lDda1brEbfC4yKoFn9CCYgGAqBRXA63_gphtc-DMwwSIoKUSA4h0U_Hjv0OZbVzXa_eQU8lF9HtTno_p8VB_4q33pUDRY_tF71wFId8AY67atKyzQ9QdqfwF_JY8g</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Borenstein, Jeffrey T.</creator><creator>Weinberg, Eli J.</creator><creator>Orrick, Brian K.</creator><creator>Sundback, Cathryn</creator><creator>Kaazempur-Mofrad, Mohammad R.</creator><creator>Vacanti, Joseph P.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>Microfabrication of Three-Dimensional Engineered Scaffolds</title><author>Borenstein, Jeffrey T. ; Weinberg, Eli J. ; Orrick, Brian K. ; Sundback, Cathryn ; Kaazempur-Mofrad, Mohammad R. ; Vacanti, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-ce9999edbe484f40c7484337a1c44faf41171bf76feb02df8b1f527b150e827e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biomedical materials</topic><topic>Humans</topic><topic>Mechanical engineering</topic><topic>Miniaturization</topic><topic>Review</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Borenstein, Jeffrey T.</creatorcontrib><creatorcontrib>Weinberg, Eli J.</creatorcontrib><creatorcontrib>Orrick, Brian K.</creatorcontrib><creatorcontrib>Sundback, Cathryn</creatorcontrib><creatorcontrib>Kaazempur-Mofrad, Mohammad R.</creatorcontrib><creatorcontrib>Vacanti, Joseph P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borenstein, Jeffrey T.</au><au>Weinberg, Eli J.</au><au>Orrick, Brian K.</au><au>Sundback, Cathryn</au><au>Kaazempur-Mofrad, Mohammad R.</au><au>Vacanti, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfabrication of Three-Dimensional Engineered Scaffolds</atitle><jtitle>Tissue engineering</jtitle><addtitle>Tissue Eng</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>13</volume><issue>8</issue><spage>1837</spage><epage>1844</epage><pages>1837-1844</pages><issn>1076-3279</issn><eissn>1557-8690</eissn><abstract>One of the principal challenges facing the field of tissue engineering over the past 2 decades has been the requirement for large-scale engineered constructs comprising precisely organized cellular microenvironments. For vital organ assist and replacement devices, microfluidic-based systems such as the microcirculation, biliary, or renal filtration and resorption systems and other functional elements containing multiple cell types must be generated to provide for viable engineered tissues and clinical benefit. Over the last several years, microfabrication technology has emerged as a versatile and powerful approach for generating precisely engineered scaffolds for engineered tissues. Fabrication process tools such as photolithography, etching, molding, and lamination have been established for applications involving a range of biocompatible and biodegradable polymeric scaffolding materials. Computational fluid dynamic designs have been used to generate scaffold designs suitable for microvasculature and a number of organ-specific constructs; these designs have been translated into 3-dimensional scaffolding using microfabrication processes. Here a brief overview of the fundamental microfabrication technologies used for tissue engineering will be presented, along with a summary of progress in a number of applications, including the liver and kidney.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>17590149</pmid><doi>10.1089/ten.2006.0156</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-3279 |
ispartof | Tissue engineering, 2007-08, Vol.13 (8), p.1837-1844 |
issn | 1076-3279 1557-8690 |
language | eng |
recordid | cdi_proquest_miscellaneous_68170581 |
source | Mary Ann Liebert Online Subscription; MEDLINE |
subjects | Animals Biocompatible Materials - chemical synthesis Biomedical materials Humans Mechanical engineering Miniaturization Review Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods |
title | Microfabrication of Three-Dimensional Engineered Scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfabrication%20of%20Three-Dimensional%20Engineered%20Scaffolds&rft.jtitle=Tissue%20engineering&rft.au=Borenstein,%20Jeffrey%20T.&rft.date=2007-08-01&rft.volume=13&rft.issue=8&rft.spage=1837&rft.epage=1844&rft.pages=1837-1844&rft.issn=1076-3279&rft.eissn=1557-8690&rft_id=info:doi/10.1089/ten.2006.0156&rft_dat=%3Cproquest_cross%3E20649309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215609766&rft_id=info:pmid/17590149&rfr_iscdi=true |