Greyhound meningoencephalitis: PCR-based detection methods highlight an absence of the most likely primary inducing agents
Greyhound meningoencephalitis is currently classified as a breed-associated idiopathic central nervous system inflammatory disorder. The non-suppurative inflammatory response can be distinguished from the other breed-associated disorders based on histopathology and lesion topography, however the nat...
Gespeichert in:
Veröffentlicht in: | Veterinary microbiology 2006-12, Vol.118 (3), p.189-200 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Greyhound meningoencephalitis is currently classified as a breed-associated idiopathic central nervous system inflammatory disorder. The non-suppurative inflammatory response can be distinguished from the other breed-associated disorders based on histopathology and lesion topography, however the nature of the response primarily suggests a viral infection.
In the present study PCR and RT-PCR technologies were employed on frozen cerebral tissue from confirmed cases of meningoencephalitis to target specific viruses and protozoa likely to be implicated and to exclude the presence of bacterial 16SrRNA. Secondly, degenerate primers were used to detect viruses of the herpesvirus and flavivirus families. In addition cerebral tissues were probed for West Nile Virus.
Viral nucleic acid sequences to Borna disease virus, to louping ill, tick borne encephalitis, West Nile and other flaviviruses were not detected. Canine distemper virus was detected in one animal with 97% homology to strain A75/15. Degenerate PCR for herpesviruses detected viral amplification products in one animal with 90% homology to canine herpesvirus DNA polymerase gene. Protozoal amplification products were only detected in a single dog with pathological confirmation of a combination of lesions of greyhound meningoencephalitis and a protozoal encephalomyelitis. Neospora was confirmed with sequence homology to Austrian strain 1. Bacterial 16SrRNA was not detected.
The present study supports previous observations that many of the known microbial causes of canine meningoencephalitis are not involved. Findings could reflect that the causal agent was not specifically targeted for detection, or that the agent is at undetectable levels or has been eliminated from brain tissue. The potential roles of genetics and of molecular mimicry also cannot be discounted. |
---|---|
ISSN: | 0378-1135 1873-2542 |
DOI: | 10.1016/j.vetmic.2006.07.019 |