Modelling interaction sites in protein domains with interaction profile hidden Markov models

Motivation: Due to the growing number of completely sequenced genomes, functional annotation of proteins becomes a more and more important issue. Here, we describe a method for the prediction of sites within protein domains, which are part of protein–ligand interactions. As recently demonstrated, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2006-12, Vol.22 (23), p.2851-2857
Hauptverfasser: Friedrich, Torben, Pils, Birgit, Dandekar, Thomas, Schultz, Jörg, Müller, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2857
container_issue 23
container_start_page 2851
container_title Bioinformatics
container_volume 22
creator Friedrich, Torben
Pils, Birgit
Dandekar, Thomas
Schultz, Jörg
Müller, Tobias
description Motivation: Due to the growing number of completely sequenced genomes, functional annotation of proteins becomes a more and more important issue. Here, we describe a method for the prediction of sites within protein domains, which are part of protein–ligand interactions. As recently demonstrated, these sites are not trivial to detect because of a varying degree of conservation of their location and type within a domain family. Results: The developed method for the prediction of protein–ligand interaction sites is based on a newly defined interaction profile hidden Markov model (ipHMM) topology that takes structural and sequence data into account. It is based on a homology search via a posterior decoding algorithm that yields probabilities for interacting sequence positions and inherits the efficiency and the power of the profile hidden Markov model (pHMM) methodology. The algorithm enhances the quality of interaction site predictions and is a suitable tool for large scale studies, which was already demonstrated for pHMMs. Availability: The MATLAB-files are available on request from the first author. Contact:tobias.mueller@biozentrum.uni-wuerzburg.de Supplementary information:
doi_str_mv 10.1093/bioinformatics/btl486
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68163438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1167281851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-2b9dc340f425fed9d620ab47bb6314658150c84201004607c13428c4fe0e0a193</originalsourceid><addsrcrecordid>eNqFkVtrFTEUhYMotrb-BGUQ9G3sznUyj1qsRzhFWyqICCGTydjUmaQmOV7-vbucg6W--LRD9rcXa7EIeULhJYWeHw0hhTilvNgaXDka6iy0ukf2qVDQMpD9fXxz1bVCA98jj0q5ApBUCPGQ7NEOADrJ98mX0zT6eQ7xaxNi9dm6GlJsSqi-4E9znVP1OMe02BBL8zPUyzskAlOYfXMZxtHH5tTmb-lHs9yolkPyYLJz8Y9384B8PHlzcbxq1-_fvjt-tW4dmqstG_rRcQGTYHLyYz8qBnYQ3TAojnGkphKcFgwoAKbrHOWCaScmDx4s7fkBebHVRTPfN75Us4TiMJaNPm2KUZoqLrj-L0h7CYwJheCzf8CrtMkRQyCjFQpyhpDcQi6nUrKfzHUOi82_DQVzU5K5W5LZloR3T3fim2Hx4-3VrhUEnu8AW5ydp2yjC-WW0xwtCopcu-VCqf7X3z1WYFTHO2lWnz6bkzO54h9er805_wMV5K7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198668132</pqid></control><display><type>article</type><title>Modelling interaction sites in protein domains with interaction profile hidden Markov models</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Friedrich, Torben ; Pils, Birgit ; Dandekar, Thomas ; Schultz, Jörg ; Müller, Tobias</creator><creatorcontrib>Friedrich, Torben ; Pils, Birgit ; Dandekar, Thomas ; Schultz, Jörg ; Müller, Tobias</creatorcontrib><description>Motivation: Due to the growing number of completely sequenced genomes, functional annotation of proteins becomes a more and more important issue. Here, we describe a method for the prediction of sites within protein domains, which are part of protein–ligand interactions. As recently demonstrated, these sites are not trivial to detect because of a varying degree of conservation of their location and type within a domain family. Results: The developed method for the prediction of protein–ligand interaction sites is based on a newly defined interaction profile hidden Markov model (ipHMM) topology that takes structural and sequence data into account. It is based on a homology search via a posterior decoding algorithm that yields probabilities for interacting sequence positions and inherits the efficiency and the power of the profile hidden Markov model (pHMM) methodology. The algorithm enhances the quality of interaction site predictions and is a suitable tool for large scale studies, which was already demonstrated for pHMMs. Availability: The MATLAB-files are available on request from the first author. Contact:tobias.mueller@biozentrum.uni-wuerzburg.de Supplementary information:</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btl486</identifier><identifier>PMID: 17000753</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Amino Acid Sequence ; Artificial Intelligence ; Binding Sites ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; General aspects ; Markov Chains ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Molecular Sequence Data ; Pattern Recognition, Automated - methods ; Protein Binding ; Protein Interaction Mapping - methods ; Protein Structure, Tertiary ; Sequence Alignment - methods ; Sequence Analysis, Protein - methods</subject><ispartof>Bioinformatics, 2006-12, Vol.22 (23), p.2851-2857</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Dec 1, 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-2b9dc340f425fed9d620ab47bb6314658150c84201004607c13428c4fe0e0a193</citedby><cites>FETCH-LOGICAL-c480t-2b9dc340f425fed9d620ab47bb6314658150c84201004607c13428c4fe0e0a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18346341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17000753$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedrich, Torben</creatorcontrib><creatorcontrib>Pils, Birgit</creatorcontrib><creatorcontrib>Dandekar, Thomas</creatorcontrib><creatorcontrib>Schultz, Jörg</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><title>Modelling interaction sites in protein domains with interaction profile hidden Markov models</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Due to the growing number of completely sequenced genomes, functional annotation of proteins becomes a more and more important issue. Here, we describe a method for the prediction of sites within protein domains, which are part of protein–ligand interactions. As recently demonstrated, these sites are not trivial to detect because of a varying degree of conservation of their location and type within a domain family. Results: The developed method for the prediction of protein–ligand interaction sites is based on a newly defined interaction profile hidden Markov model (ipHMM) topology that takes structural and sequence data into account. It is based on a homology search via a posterior decoding algorithm that yields probabilities for interacting sequence positions and inherits the efficiency and the power of the profile hidden Markov model (pHMM) methodology. The algorithm enhances the quality of interaction site predictions and is a suitable tool for large scale studies, which was already demonstrated for pHMMs. Availability: The MATLAB-files are available on request from the first author. Contact:tobias.mueller@biozentrum.uni-wuerzburg.de Supplementary information:</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Artificial Intelligence</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Markov Chains</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Molecular Sequence Data</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Protein Binding</subject><subject>Protein Interaction Mapping - methods</subject><subject>Protein Structure, Tertiary</subject><subject>Sequence Alignment - methods</subject><subject>Sequence Analysis, Protein - methods</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVtrFTEUhYMotrb-BGUQ9G3sznUyj1qsRzhFWyqICCGTydjUmaQmOV7-vbucg6W--LRD9rcXa7EIeULhJYWeHw0hhTilvNgaXDka6iy0ukf2qVDQMpD9fXxz1bVCA98jj0q5ApBUCPGQ7NEOADrJ98mX0zT6eQ7xaxNi9dm6GlJsSqi-4E9znVP1OMe02BBL8zPUyzskAlOYfXMZxtHH5tTmb-lHs9yolkPyYLJz8Y9384B8PHlzcbxq1-_fvjt-tW4dmqstG_rRcQGTYHLyYz8qBnYQ3TAojnGkphKcFgwoAKbrHOWCaScmDx4s7fkBebHVRTPfN75Us4TiMJaNPm2KUZoqLrj-L0h7CYwJheCzf8CrtMkRQyCjFQpyhpDcQi6nUrKfzHUOi82_DQVzU5K5W5LZloR3T3fim2Hx4-3VrhUEnu8AW5ydp2yjC-WW0xwtCopcu-VCqf7X3z1WYFTHO2lWnz6bkzO54h9er805_wMV5K7o</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Friedrich, Torben</creator><creator>Pils, Birgit</creator><creator>Dandekar, Thomas</creator><creator>Schultz, Jörg</creator><creator>Müller, Tobias</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Modelling interaction sites in protein domains with interaction profile hidden Markov models</title><author>Friedrich, Torben ; Pils, Birgit ; Dandekar, Thomas ; Schultz, Jörg ; Müller, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-2b9dc340f425fed9d620ab47bb6314658150c84201004607c13428c4fe0e0a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Artificial Intelligence</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Markov Chains</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Molecular Sequence Data</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Protein Binding</topic><topic>Protein Interaction Mapping - methods</topic><topic>Protein Structure, Tertiary</topic><topic>Sequence Alignment - methods</topic><topic>Sequence Analysis, Protein - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Torben</creatorcontrib><creatorcontrib>Pils, Birgit</creatorcontrib><creatorcontrib>Dandekar, Thomas</creatorcontrib><creatorcontrib>Schultz, Jörg</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Torben</au><au>Pils, Birgit</au><au>Dandekar, Thomas</au><au>Schultz, Jörg</au><au>Müller, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling interaction sites in protein domains with interaction profile hidden Markov models</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>22</volume><issue>23</issue><spage>2851</spage><epage>2857</epage><pages>2851-2857</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Due to the growing number of completely sequenced genomes, functional annotation of proteins becomes a more and more important issue. Here, we describe a method for the prediction of sites within protein domains, which are part of protein–ligand interactions. As recently demonstrated, these sites are not trivial to detect because of a varying degree of conservation of their location and type within a domain family. Results: The developed method for the prediction of protein–ligand interaction sites is based on a newly defined interaction profile hidden Markov model (ipHMM) topology that takes structural and sequence data into account. It is based on a homology search via a posterior decoding algorithm that yields probabilities for interacting sequence positions and inherits the efficiency and the power of the profile hidden Markov model (pHMM) methodology. The algorithm enhances the quality of interaction site predictions and is a suitable tool for large scale studies, which was already demonstrated for pHMMs. Availability: The MATLAB-files are available on request from the first author. Contact:tobias.mueller@biozentrum.uni-wuerzburg.de Supplementary information:</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>17000753</pmid><doi>10.1093/bioinformatics/btl486</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2006-12, Vol.22 (23), p.2851-2857
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_68163438
source MEDLINE; Access via Oxford University Press (Open Access Collection); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Amino Acid Sequence
Artificial Intelligence
Binding Sites
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
General aspects
Markov Chains
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Molecular Sequence Data
Pattern Recognition, Automated - methods
Protein Binding
Protein Interaction Mapping - methods
Protein Structure, Tertiary
Sequence Alignment - methods
Sequence Analysis, Protein - methods
title Modelling interaction sites in protein domains with interaction profile hidden Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20interaction%20sites%20in%20protein%20domains%20with%20interaction%20profile%20hidden%20Markov%20models&rft.jtitle=Bioinformatics&rft.au=Friedrich,%20Torben&rft.date=2006-12-01&rft.volume=22&rft.issue=23&rft.spage=2851&rft.epage=2857&rft.pages=2851-2857&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btl486&rft_dat=%3Cproquest_cross%3E1167281851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198668132&rft_id=info:pmid/17000753&rfr_iscdi=true