Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale
: Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which a...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2006-10, Vol.1078 (1), p.15-25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Annals of the New York Academy of Sciences |
container_volume | 1078 |
creator | PALMER, GUY H. FUTSE, JAMES E. KNOWLES JR, DONALD P. BRAYTON, KELLY A. |
description | : Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence. |
doi_str_mv | 10.1196/annals.1374.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68157052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20225760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</originalsourceid><addsrcrecordid>eNqFkc1v00AQxVcIREPhzA3tiZvT3fV-2MeQtmmltgj1A8FlNVmPkwV7nXodSvnr2cgRHHMaaeb3np7mEfKesynnpT6BEKCJU54bOWVMvCATbmSZaZ2Ll2TCmDFZUYr8iLyJ8QdjXBTSvCZH3HAutdET8ucyRL9aD5H6MHT0Gt0ago9tpF1NP4EbsPfQ0FkY_AqDd_QB0mLwXaCn6fQLK1r3XUuHNdJ5124aHJAuMHQt0lt83GJwuLOaBdg0EFugLfQrn1LjW_KqTuHx3X4ek_vzs7v5RXb1eXE5n11lTuaFyBTnSrmSK64V5E4AlBxQLU3Olo5xVdVYYymdrBhUIOs0C-GYY9qVRQ0mPyYfR99N36VAcbCtjw6bBgJ222h1wZVhShwEBRNCGc0OgrxUqpBCJvBkBF3fxdhjbTe9Tw94tpzZXYF2LNDuCrSpwKT4sLfeLlus_vP7xhIgRuDJN_h8yM_efJvd7lyzUeTjgL__iaD_abXJjbJfbxa2OC--fFcP10n8F9zOuG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19558424</pqid></control><display><type>article</type><title>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>PALMER, GUY H. ; FUTSE, JAMES E. ; KNOWLES JR, DONALD P. ; BRAYTON, KELLY A.</creator><creatorcontrib>PALMER, GUY H. ; FUTSE, JAMES E. ; KNOWLES JR, DONALD P. ; BRAYTON, KELLY A.</creatorcontrib><description>: Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1196/annals.1374.002</identifier><identifier>PMID: 17114676</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>A. marginale ; Anaplasma ; Anaplasma marginale ; Anaplasma marginale - genetics ; Anaplasmosis - epidemiology ; Anaplasmosis - genetics ; Animals ; antigenic variation ; Antigens, Bacterial - genetics ; Bacteria ; Bacterial Outer Membrane Proteins - genetics ; Disease Progression ; functional supergenes ; gene conversion ; Genetic Variation ; Genome, Bacterial ; immune evasion ; Recombination, Genetic</subject><ispartof>Annals of the New York Academy of Sciences, 2006-10, Vol.1078 (1), p.15-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</citedby><cites>FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1196%2Fannals.1374.002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1196%2Fannals.1374.002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17114676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PALMER, GUY H.</creatorcontrib><creatorcontrib>FUTSE, JAMES E.</creatorcontrib><creatorcontrib>KNOWLES JR, DONALD P.</creatorcontrib><creatorcontrib>BRAYTON, KELLY A.</creatorcontrib><title>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>: Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.</description><subject>A. marginale</subject><subject>Anaplasma</subject><subject>Anaplasma marginale</subject><subject>Anaplasma marginale - genetics</subject><subject>Anaplasmosis - epidemiology</subject><subject>Anaplasmosis - genetics</subject><subject>Animals</subject><subject>antigenic variation</subject><subject>Antigens, Bacterial - genetics</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Disease Progression</subject><subject>functional supergenes</subject><subject>gene conversion</subject><subject>Genetic Variation</subject><subject>Genome, Bacterial</subject><subject>immune evasion</subject><subject>Recombination, Genetic</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v00AQxVcIREPhzA3tiZvT3fV-2MeQtmmltgj1A8FlNVmPkwV7nXodSvnr2cgRHHMaaeb3np7mEfKesynnpT6BEKCJU54bOWVMvCATbmSZaZ2Ll2TCmDFZUYr8iLyJ8QdjXBTSvCZH3HAutdET8ucyRL9aD5H6MHT0Gt0ago9tpF1NP4EbsPfQ0FkY_AqDd_QB0mLwXaCn6fQLK1r3XUuHNdJ5124aHJAuMHQt0lt83GJwuLOaBdg0EFugLfQrn1LjW_KqTuHx3X4ek_vzs7v5RXb1eXE5n11lTuaFyBTnSrmSK64V5E4AlBxQLU3Olo5xVdVYYymdrBhUIOs0C-GYY9qVRQ0mPyYfR99N36VAcbCtjw6bBgJ222h1wZVhShwEBRNCGc0OgrxUqpBCJvBkBF3fxdhjbTe9Tw94tpzZXYF2LNDuCrSpwKT4sLfeLlus_vP7xhIgRuDJN_h8yM_efJvd7lyzUeTjgL__iaD_abXJjbJfbxa2OC--fFcP10n8F9zOuG4</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>PALMER, GUY H.</creator><creator>FUTSE, JAMES E.</creator><creator>KNOWLES JR, DONALD P.</creator><creator>BRAYTON, KELLY A.</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</title><author>PALMER, GUY H. ; FUTSE, JAMES E. ; KNOWLES JR, DONALD P. ; BRAYTON, KELLY A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>A. marginale</topic><topic>Anaplasma</topic><topic>Anaplasma marginale</topic><topic>Anaplasma marginale - genetics</topic><topic>Anaplasmosis - epidemiology</topic><topic>Anaplasmosis - genetics</topic><topic>Animals</topic><topic>antigenic variation</topic><topic>Antigens, Bacterial - genetics</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Disease Progression</topic><topic>functional supergenes</topic><topic>gene conversion</topic><topic>Genetic Variation</topic><topic>Genome, Bacterial</topic><topic>immune evasion</topic><topic>Recombination, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PALMER, GUY H.</creatorcontrib><creatorcontrib>FUTSE, JAMES E.</creatorcontrib><creatorcontrib>KNOWLES JR, DONALD P.</creatorcontrib><creatorcontrib>BRAYTON, KELLY A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PALMER, GUY H.</au><au>FUTSE, JAMES E.</au><au>KNOWLES JR, DONALD P.</au><au>BRAYTON, KELLY A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2006-10</date><risdate>2006</risdate><volume>1078</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>: Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>17114676</pmid><doi>10.1196/annals.1374.002</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0077-8923 |
ispartof | Annals of the New York Academy of Sciences, 2006-10, Vol.1078 (1), p.15-25 |
issn | 0077-8923 1749-6632 |
language | eng |
recordid | cdi_proquest_miscellaneous_68157052 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | A. marginale Anaplasma Anaplasma marginale Anaplasma marginale - genetics Anaplasmosis - epidemiology Anaplasmosis - genetics Animals antigenic variation Antigens, Bacterial - genetics Bacteria Bacterial Outer Membrane Proteins - genetics Disease Progression functional supergenes gene conversion Genetic Variation Genome, Bacterial immune evasion Recombination, Genetic |
title | Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20Mechanisms%20of%20Bacterial%20Antigenic%20Variation%20Derived%20from%20the%20Complete%20Genome%20Sequence%20of%20Anaplasma%20marginale&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=PALMER,%20GUY%20H.&rft.date=2006-10&rft.volume=1078&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1196/annals.1374.002&rft_dat=%3Cproquest_cross%3E20225760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19558424&rft_id=info:pmid/17114676&rfr_iscdi=true |