Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale

:  Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the New York Academy of Sciences 2006-10, Vol.1078 (1), p.15-25
Hauptverfasser: PALMER, GUY H., FUTSE, JAMES E., KNOWLES JR, DONALD P., BRAYTON, KELLY A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 15
container_title Annals of the New York Academy of Sciences
container_volume 1078
creator PALMER, GUY H.
FUTSE, JAMES E.
KNOWLES JR, DONALD P.
BRAYTON, KELLY A.
description :  Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.
doi_str_mv 10.1196/annals.1374.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68157052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20225760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</originalsourceid><addsrcrecordid>eNqFkc1v00AQxVcIREPhzA3tiZvT3fV-2MeQtmmltgj1A8FlNVmPkwV7nXodSvnr2cgRHHMaaeb3np7mEfKesynnpT6BEKCJU54bOWVMvCATbmSZaZ2Ll2TCmDFZUYr8iLyJ8QdjXBTSvCZH3HAutdET8ucyRL9aD5H6MHT0Gt0ago9tpF1NP4EbsPfQ0FkY_AqDd_QB0mLwXaCn6fQLK1r3XUuHNdJ5124aHJAuMHQt0lt83GJwuLOaBdg0EFugLfQrn1LjW_KqTuHx3X4ek_vzs7v5RXb1eXE5n11lTuaFyBTnSrmSK64V5E4AlBxQLU3Olo5xVdVYYymdrBhUIOs0C-GYY9qVRQ0mPyYfR99N36VAcbCtjw6bBgJ222h1wZVhShwEBRNCGc0OgrxUqpBCJvBkBF3fxdhjbTe9Tw94tpzZXYF2LNDuCrSpwKT4sLfeLlus_vP7xhIgRuDJN_h8yM_efJvd7lyzUeTjgL__iaD_abXJjbJfbxa2OC--fFcP10n8F9zOuG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19558424</pqid></control><display><type>article</type><title>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>PALMER, GUY H. ; FUTSE, JAMES E. ; KNOWLES JR, DONALD P. ; BRAYTON, KELLY A.</creator><creatorcontrib>PALMER, GUY H. ; FUTSE, JAMES E. ; KNOWLES JR, DONALD P. ; BRAYTON, KELLY A.</creatorcontrib><description>:  Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>DOI: 10.1196/annals.1374.002</identifier><identifier>PMID: 17114676</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>A. marginale ; Anaplasma ; Anaplasma marginale ; Anaplasma marginale - genetics ; Anaplasmosis - epidemiology ; Anaplasmosis - genetics ; Animals ; antigenic variation ; Antigens, Bacterial - genetics ; Bacteria ; Bacterial Outer Membrane Proteins - genetics ; Disease Progression ; functional supergenes ; gene conversion ; Genetic Variation ; Genome, Bacterial ; immune evasion ; Recombination, Genetic</subject><ispartof>Annals of the New York Academy of Sciences, 2006-10, Vol.1078 (1), p.15-25</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</citedby><cites>FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1196%2Fannals.1374.002$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1196%2Fannals.1374.002$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17114676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PALMER, GUY H.</creatorcontrib><creatorcontrib>FUTSE, JAMES E.</creatorcontrib><creatorcontrib>KNOWLES JR, DONALD P.</creatorcontrib><creatorcontrib>BRAYTON, KELLY A.</creatorcontrib><title>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>:  Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.</description><subject>A. marginale</subject><subject>Anaplasma</subject><subject>Anaplasma marginale</subject><subject>Anaplasma marginale - genetics</subject><subject>Anaplasmosis - epidemiology</subject><subject>Anaplasmosis - genetics</subject><subject>Animals</subject><subject>antigenic variation</subject><subject>Antigens, Bacterial - genetics</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Disease Progression</subject><subject>functional supergenes</subject><subject>gene conversion</subject><subject>Genetic Variation</subject><subject>Genome, Bacterial</subject><subject>immune evasion</subject><subject>Recombination, Genetic</subject><issn>0077-8923</issn><issn>1749-6632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v00AQxVcIREPhzA3tiZvT3fV-2MeQtmmltgj1A8FlNVmPkwV7nXodSvnr2cgRHHMaaeb3np7mEfKesynnpT6BEKCJU54bOWVMvCATbmSZaZ2Ll2TCmDFZUYr8iLyJ8QdjXBTSvCZH3HAutdET8ucyRL9aD5H6MHT0Gt0ago9tpF1NP4EbsPfQ0FkY_AqDd_QB0mLwXaCn6fQLK1r3XUuHNdJ5124aHJAuMHQt0lt83GJwuLOaBdg0EFugLfQrn1LjW_KqTuHx3X4ek_vzs7v5RXb1eXE5n11lTuaFyBTnSrmSK64V5E4AlBxQLU3Olo5xVdVYYymdrBhUIOs0C-GYY9qVRQ0mPyYfR99N36VAcbCtjw6bBgJ222h1wZVhShwEBRNCGc0OgrxUqpBCJvBkBF3fxdhjbTe9Tw94tpzZXYF2LNDuCrSpwKT4sLfeLlus_vP7xhIgRuDJN_h8yM_efJvd7lyzUeTjgL__iaD_abXJjbJfbxa2OC--fFcP10n8F9zOuG4</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>PALMER, GUY H.</creator><creator>FUTSE, JAMES E.</creator><creator>KNOWLES JR, DONALD P.</creator><creator>BRAYTON, KELLY A.</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</title><author>PALMER, GUY H. ; FUTSE, JAMES E. ; KNOWLES JR, DONALD P. ; BRAYTON, KELLY A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4382-51155c915165a3c2aa91ae5b730bc015dfefe94c4d0ada4f4d082c0c06c98fa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>A. marginale</topic><topic>Anaplasma</topic><topic>Anaplasma marginale</topic><topic>Anaplasma marginale - genetics</topic><topic>Anaplasmosis - epidemiology</topic><topic>Anaplasmosis - genetics</topic><topic>Animals</topic><topic>antigenic variation</topic><topic>Antigens, Bacterial - genetics</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Disease Progression</topic><topic>functional supergenes</topic><topic>gene conversion</topic><topic>Genetic Variation</topic><topic>Genome, Bacterial</topic><topic>immune evasion</topic><topic>Recombination, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PALMER, GUY H.</creatorcontrib><creatorcontrib>FUTSE, JAMES E.</creatorcontrib><creatorcontrib>KNOWLES JR, DONALD P.</creatorcontrib><creatorcontrib>BRAYTON, KELLY A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PALMER, GUY H.</au><au>FUTSE, JAMES E.</au><au>KNOWLES JR, DONALD P.</au><au>BRAYTON, KELLY A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2006-10</date><risdate>2006</risdate><volume>1078</volume><issue>1</issue><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><abstract>:  Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick‐borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer‐membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon‐linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long‐term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>17114676</pmid><doi>10.1196/annals.1374.002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2006-10, Vol.1078 (1), p.15-25
issn 0077-8923
1749-6632
language eng
recordid cdi_proquest_miscellaneous_68157052
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects A. marginale
Anaplasma
Anaplasma marginale
Anaplasma marginale - genetics
Anaplasmosis - epidemiology
Anaplasmosis - genetics
Animals
antigenic variation
Antigens, Bacterial - genetics
Bacteria
Bacterial Outer Membrane Proteins - genetics
Disease Progression
functional supergenes
gene conversion
Genetic Variation
Genome, Bacterial
immune evasion
Recombination, Genetic
title Insights into Mechanisms of Bacterial Antigenic Variation Derived from the Complete Genome Sequence of Anaplasma marginale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20Mechanisms%20of%20Bacterial%20Antigenic%20Variation%20Derived%20from%20the%20Complete%20Genome%20Sequence%20of%20Anaplasma%20marginale&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=PALMER,%20GUY%20H.&rft.date=2006-10&rft.volume=1078&rft.issue=1&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1196/annals.1374.002&rft_dat=%3Cproquest_cross%3E20225760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19558424&rft_id=info:pmid/17114676&rfr_iscdi=true