A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration
Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for re...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2007-10, Vol.28 (29), p.4321-4329 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4329 |
---|---|
container_issue | 29 |
container_start_page | 4321 |
container_title | Biomaterials |
container_volume | 28 |
creator | Whitlock, Patrick W Smith, Thomas L Poehling, Gary G Shilt, Jeffrey S Van Dyke, Mark |
description | Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo. |
doi_str_mv | 10.1016/j.biomaterials.2007.05.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68153625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296120700405X</els_id><sourcerecordid>30099091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</originalsourceid><addsrcrecordid>eNqNkk2L1TAUhoMoznX0L0hx4WpaT9I2bVwIw8z4AQMuVHAX0uR0zLVNrkk6cP31k3qvKG7GVQg873tCnkPICwoVBcpfbavB-lklDFZNsWIAXQVtBUw8IBvad33ZCmgfkg3QhpWCU3ZCnsS4hXyHhj0mJ7TjFETTb8juvHAqLUFN074wufEWzVmh98lrP-9UssOEZ4VyplBBf7MJ9W_Y75Kd7U80RdRqHP1kitGHIqEz3v1KTPZGzehSEfAGHYbc5t1T8mjMr8Znx_OUfHl79fnifXn98d2Hi_PrUrecppIpLQztTU15PYiuN30vmlGpWnA9NEw3ncBe4MBMx8TIBTcdbfgIXIDGehT1KXl56N0F_2PBmORso8ZpUg79EiXvaVtz1t4L1gBCgKD3ggxqYD2tM_j6AOrgYww4yl2wswp7SUGuBuVW_m1QrgYltDIbzOHnxynLMKP5Ez0qy8DlAcD8e7cWg4zaotNobMh2pPH2_-a8-adGT9ZZrabvuMe49Utwa4bKyCTIT-surasEHUAD7df6DvgEyl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20302813</pqid></control><display><type>article</type><title>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Whitlock, Patrick W ; Smith, Thomas L ; Poehling, Gary G ; Shilt, Jeffrey S ; Van Dyke, Mark</creator><creatorcontrib>Whitlock, Patrick W ; Smith, Thomas L ; Poehling, Gary G ; Shilt, Jeffrey S ; Van Dyke, Mark</creatorcontrib><description>Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2007.05.029</identifier><identifier>PMID: 17610948</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Biocompatible Materials - chemistry ; Cell-Free System ; Dentistry ; Extracellular Matrix - chemistry ; Female ; Guided Tissue Regeneration - methods ; Ligament ; Ligaments - injuries ; Ligaments - pathology ; Ligaments - surgery ; Materials Testing ; Mice ; Porosity ; Scaffold ; Tendon ; Tendon Injuries - pathology ; Tendon Injuries - surgery ; Tendons - chemistry ; Tensile Strength ; Tissue Engineering - methods ; Treatment Outcome</subject><ispartof>Biomaterials, 2007-10, Vol.28 (29), p.4321-4329</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</citedby><cites>FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2007.05.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17610948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitlock, Patrick W</creatorcontrib><creatorcontrib>Smith, Thomas L</creatorcontrib><creatorcontrib>Poehling, Gary G</creatorcontrib><creatorcontrib>Shilt, Jeffrey S</creatorcontrib><creatorcontrib>Van Dyke, Mark</creatorcontrib><title>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell-Free System</subject><subject>Dentistry</subject><subject>Extracellular Matrix - chemistry</subject><subject>Female</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Ligament</subject><subject>Ligaments - injuries</subject><subject>Ligaments - pathology</subject><subject>Ligaments - surgery</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Porosity</subject><subject>Scaffold</subject><subject>Tendon</subject><subject>Tendon Injuries - pathology</subject><subject>Tendon Injuries - surgery</subject><subject>Tendons - chemistry</subject><subject>Tensile Strength</subject><subject>Tissue Engineering - methods</subject><subject>Treatment Outcome</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2L1TAUhoMoznX0L0hx4WpaT9I2bVwIw8z4AQMuVHAX0uR0zLVNrkk6cP31k3qvKG7GVQg873tCnkPICwoVBcpfbavB-lklDFZNsWIAXQVtBUw8IBvad33ZCmgfkg3QhpWCU3ZCnsS4hXyHhj0mJ7TjFETTb8juvHAqLUFN074wufEWzVmh98lrP-9UssOEZ4VyplBBf7MJ9W_Y75Kd7U80RdRqHP1kitGHIqEz3v1KTPZGzehSEfAGHYbc5t1T8mjMr8Znx_OUfHl79fnifXn98d2Hi_PrUrecppIpLQztTU15PYiuN30vmlGpWnA9NEw3ncBe4MBMx8TIBTcdbfgIXIDGehT1KXl56N0F_2PBmORso8ZpUg79EiXvaVtz1t4L1gBCgKD3ggxqYD2tM_j6AOrgYww4yl2wswp7SUGuBuVW_m1QrgYltDIbzOHnxynLMKP5Ez0qy8DlAcD8e7cWg4zaotNobMh2pPH2_-a8-adGT9ZZrabvuMe49Utwa4bKyCTIT-surasEHUAD7df6DvgEyl0</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Whitlock, Patrick W</creator><creator>Smith, Thomas L</creator><creator>Poehling, Gary G</creator><creator>Shilt, Jeffrey S</creator><creator>Van Dyke, Mark</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071001</creationdate><title>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</title><author>Whitlock, Patrick W ; Smith, Thomas L ; Poehling, Gary G ; Shilt, Jeffrey S ; Van Dyke, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell-Free System</topic><topic>Dentistry</topic><topic>Extracellular Matrix - chemistry</topic><topic>Female</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Ligament</topic><topic>Ligaments - injuries</topic><topic>Ligaments - pathology</topic><topic>Ligaments - surgery</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Porosity</topic><topic>Scaffold</topic><topic>Tendon</topic><topic>Tendon Injuries - pathology</topic><topic>Tendon Injuries - surgery</topic><topic>Tendons - chemistry</topic><topic>Tensile Strength</topic><topic>Tissue Engineering - methods</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitlock, Patrick W</creatorcontrib><creatorcontrib>Smith, Thomas L</creatorcontrib><creatorcontrib>Poehling, Gary G</creatorcontrib><creatorcontrib>Shilt, Jeffrey S</creatorcontrib><creatorcontrib>Van Dyke, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitlock, Patrick W</au><au>Smith, Thomas L</au><au>Poehling, Gary G</au><au>Shilt, Jeffrey S</au><au>Van Dyke, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>28</volume><issue>29</issue><spage>4321</spage><epage>4329</epage><pages>4321-4329</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>17610948</pmid><doi>10.1016/j.biomaterials.2007.05.029</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2007-10, Vol.28 (29), p.4321-4329 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_68153625 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Advanced Basic Science Animals Biocompatible Materials - chemistry Cell-Free System Dentistry Extracellular Matrix - chemistry Female Guided Tissue Regeneration - methods Ligament Ligaments - injuries Ligaments - pathology Ligaments - surgery Materials Testing Mice Porosity Scaffold Tendon Tendon Injuries - pathology Tendon Injuries - surgery Tendons - chemistry Tensile Strength Tissue Engineering - methods Treatment Outcome |
title | A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20naturally%20derived,%20cytocompatible,%20and%20architecturally%20optimized%20scaffold%20for%20tendon%20and%20ligament%20regeneration&rft.jtitle=Biomaterials&rft.au=Whitlock,%20Patrick%20W&rft.date=2007-10-01&rft.volume=28&rft.issue=29&rft.spage=4321&rft.epage=4329&rft.pages=4321-4329&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2007.05.029&rft_dat=%3Cproquest_cross%3E30099091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20302813&rft_id=info:pmid/17610948&rft_els_id=S014296120700405X&rfr_iscdi=true |