A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration

Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2007-10, Vol.28 (29), p.4321-4329
Hauptverfasser: Whitlock, Patrick W, Smith, Thomas L, Poehling, Gary G, Shilt, Jeffrey S, Van Dyke, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4329
container_issue 29
container_start_page 4321
container_title Biomaterials
container_volume 28
creator Whitlock, Patrick W
Smith, Thomas L
Poehling, Gary G
Shilt, Jeffrey S
Van Dyke, Mark
description Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.
doi_str_mv 10.1016/j.biomaterials.2007.05.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68153625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296120700405X</els_id><sourcerecordid>30099091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</originalsourceid><addsrcrecordid>eNqNkk2L1TAUhoMoznX0L0hx4WpaT9I2bVwIw8z4AQMuVHAX0uR0zLVNrkk6cP31k3qvKG7GVQg873tCnkPICwoVBcpfbavB-lklDFZNsWIAXQVtBUw8IBvad33ZCmgfkg3QhpWCU3ZCnsS4hXyHhj0mJ7TjFETTb8juvHAqLUFN074wufEWzVmh98lrP-9UssOEZ4VyplBBf7MJ9W_Y75Kd7U80RdRqHP1kitGHIqEz3v1KTPZGzehSEfAGHYbc5t1T8mjMr8Znx_OUfHl79fnifXn98d2Hi_PrUrecppIpLQztTU15PYiuN30vmlGpWnA9NEw3ncBe4MBMx8TIBTcdbfgIXIDGehT1KXl56N0F_2PBmORso8ZpUg79EiXvaVtz1t4L1gBCgKD3ggxqYD2tM_j6AOrgYww4yl2wswp7SUGuBuVW_m1QrgYltDIbzOHnxynLMKP5Ez0qy8DlAcD8e7cWg4zaotNobMh2pPH2_-a8-adGT9ZZrabvuMe49Utwa4bKyCTIT-surasEHUAD7df6DvgEyl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20302813</pqid></control><display><type>article</type><title>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Whitlock, Patrick W ; Smith, Thomas L ; Poehling, Gary G ; Shilt, Jeffrey S ; Van Dyke, Mark</creator><creatorcontrib>Whitlock, Patrick W ; Smith, Thomas L ; Poehling, Gary G ; Shilt, Jeffrey S ; Van Dyke, Mark</creatorcontrib><description>Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2007.05.029</identifier><identifier>PMID: 17610948</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Biocompatible Materials - chemistry ; Cell-Free System ; Dentistry ; Extracellular Matrix - chemistry ; Female ; Guided Tissue Regeneration - methods ; Ligament ; Ligaments - injuries ; Ligaments - pathology ; Ligaments - surgery ; Materials Testing ; Mice ; Porosity ; Scaffold ; Tendon ; Tendon Injuries - pathology ; Tendon Injuries - surgery ; Tendons - chemistry ; Tensile Strength ; Tissue Engineering - methods ; Treatment Outcome</subject><ispartof>Biomaterials, 2007-10, Vol.28 (29), p.4321-4329</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</citedby><cites>FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2007.05.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17610948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitlock, Patrick W</creatorcontrib><creatorcontrib>Smith, Thomas L</creatorcontrib><creatorcontrib>Poehling, Gary G</creatorcontrib><creatorcontrib>Shilt, Jeffrey S</creatorcontrib><creatorcontrib>Van Dyke, Mark</creatorcontrib><title>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Cell-Free System</subject><subject>Dentistry</subject><subject>Extracellular Matrix - chemistry</subject><subject>Female</subject><subject>Guided Tissue Regeneration - methods</subject><subject>Ligament</subject><subject>Ligaments - injuries</subject><subject>Ligaments - pathology</subject><subject>Ligaments - surgery</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Porosity</subject><subject>Scaffold</subject><subject>Tendon</subject><subject>Tendon Injuries - pathology</subject><subject>Tendon Injuries - surgery</subject><subject>Tendons - chemistry</subject><subject>Tensile Strength</subject><subject>Tissue Engineering - methods</subject><subject>Treatment Outcome</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2L1TAUhoMoznX0L0hx4WpaT9I2bVwIw8z4AQMuVHAX0uR0zLVNrkk6cP31k3qvKG7GVQg873tCnkPICwoVBcpfbavB-lklDFZNsWIAXQVtBUw8IBvad33ZCmgfkg3QhpWCU3ZCnsS4hXyHhj0mJ7TjFETTb8juvHAqLUFN074wufEWzVmh98lrP-9UssOEZ4VyplBBf7MJ9W_Y75Kd7U80RdRqHP1kitGHIqEz3v1KTPZGzehSEfAGHYbc5t1T8mjMr8Znx_OUfHl79fnifXn98d2Hi_PrUrecppIpLQztTU15PYiuN30vmlGpWnA9NEw3ncBe4MBMx8TIBTcdbfgIXIDGehT1KXl56N0F_2PBmORso8ZpUg79EiXvaVtz1t4L1gBCgKD3ggxqYD2tM_j6AOrgYww4yl2wswp7SUGuBuVW_m1QrgYltDIbzOHnxynLMKP5Ez0qy8DlAcD8e7cWg4zaotNobMh2pPH2_-a8-adGT9ZZrabvuMe49Utwa4bKyCTIT-surasEHUAD7df6DvgEyl0</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Whitlock, Patrick W</creator><creator>Smith, Thomas L</creator><creator>Poehling, Gary G</creator><creator>Shilt, Jeffrey S</creator><creator>Van Dyke, Mark</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20071001</creationdate><title>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</title><author>Whitlock, Patrick W ; Smith, Thomas L ; Poehling, Gary G ; Shilt, Jeffrey S ; Van Dyke, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-2ac9d18d3163b978d8894faa396cb42c479e89eb2d729f696d7146f0690ce3f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Cell-Free System</topic><topic>Dentistry</topic><topic>Extracellular Matrix - chemistry</topic><topic>Female</topic><topic>Guided Tissue Regeneration - methods</topic><topic>Ligament</topic><topic>Ligaments - injuries</topic><topic>Ligaments - pathology</topic><topic>Ligaments - surgery</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Porosity</topic><topic>Scaffold</topic><topic>Tendon</topic><topic>Tendon Injuries - pathology</topic><topic>Tendon Injuries - surgery</topic><topic>Tendons - chemistry</topic><topic>Tensile Strength</topic><topic>Tissue Engineering - methods</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitlock, Patrick W</creatorcontrib><creatorcontrib>Smith, Thomas L</creatorcontrib><creatorcontrib>Poehling, Gary G</creatorcontrib><creatorcontrib>Shilt, Jeffrey S</creatorcontrib><creatorcontrib>Van Dyke, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitlock, Patrick W</au><au>Smith, Thomas L</au><au>Poehling, Gary G</au><au>Shilt, Jeffrey S</au><au>Van Dyke, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>28</volume><issue>29</issue><spage>4321</spage><epage>4329</epage><pages>4321-4329</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Tissue-engineered tendon scaffolds have the potential to significantly improve the treatment of tendon and ligament injuries, especially those associated with tumors, trauma, and congenital deficiencies where autograft or allograft tissue might not be available in sufficient quantity for reconstruction. In this study, a tendon scaffold was produced that: (1) has decreased/absent cellular material histologically, as well as significantly decreased DNA content in comparison with the material it is derived from—fresh-frozen flexor digitorum profundus tendon; (2) is cytocompatible in vitro; (3) has been modified to produce increased pore size and porosity; (4) retains 76–78% of the tensile properties of the material it is derived from; (5) is readily infiltrated by fibroblast-like, mononuclear host cells; and (6) does not exhibit a host-cell-mediated foreign-body immune response after implantation in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>17610948</pmid><doi>10.1016/j.biomaterials.2007.05.029</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2007-10, Vol.28 (29), p.4321-4329
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_68153625
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Advanced Basic Science
Animals
Biocompatible Materials - chemistry
Cell-Free System
Dentistry
Extracellular Matrix - chemistry
Female
Guided Tissue Regeneration - methods
Ligament
Ligaments - injuries
Ligaments - pathology
Ligaments - surgery
Materials Testing
Mice
Porosity
Scaffold
Tendon
Tendon Injuries - pathology
Tendon Injuries - surgery
Tendons - chemistry
Tensile Strength
Tissue Engineering - methods
Treatment Outcome
title A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20naturally%20derived,%20cytocompatible,%20and%20architecturally%20optimized%20scaffold%20for%20tendon%20and%20ligament%20regeneration&rft.jtitle=Biomaterials&rft.au=Whitlock,%20Patrick%20W&rft.date=2007-10-01&rft.volume=28&rft.issue=29&rft.spage=4321&rft.epage=4329&rft.pages=4321-4329&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2007.05.029&rft_dat=%3Cproquest_cross%3E30099091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20302813&rft_id=info:pmid/17610948&rft_els_id=S014296120700405X&rfr_iscdi=true