Group sequential t -test for clinical trials with small sample sizes across stages

Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contemporary clinical trials 2007-09, Vol.28 (5), p.563-571
Hauptverfasser: Shao, Jun, Feng, Huaibao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue 5
container_start_page 563
container_title Contemporary clinical trials
container_volume 28
creator Shao, Jun
Feng, Huaibao
description Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages.
doi_str_mv 10.1016/j.cct.2007.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68152699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1551714407000328</els_id><sourcerecordid>68152699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwAbggX-gtYZzEjiMkpKqCglQJqYWz5UxmwUv-LB6nqHx6nN1FlThwsGzF741ffi_LXkooJEj9ZlsgxqIEaAooCwD9KDuVSrV5CRU83p9l3si6PsmeMW8BKq20epqdyKauaiPr0-zmKszLTjD9XGiK3g0iijwSR7GZg8DBTx7XjyFdsfjl43fBoxsGwW7cDSTY_yYWDsPMLDi6b8TPsyebJKYXx_0s-_rh_ZfLj_n156tPlxfXOdaVjnmpdNelHOQahxqcRN326R90hWkp5xqlCAwY3XTUIsoWTGkAe0TsJHXVWXZ-mLsLc0rP0Y6ekYbBTTQvbLWRqtRtm4TyINynDLSxu-BHF-6tBLuCtFubQNoVpIXSphDJ8-o4fOlG6h8cR3JJ8PoocJwIbYKb0PODzrStafeD3h50lFDceQqW0dOE1PtA6dF-9v-N8e4f999KftA98XZewpQYW2k5Gezt2vhaODSQ2i5N9QdHAaVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68152699</pqid></control><display><type>article</type><title>Group sequential t -test for clinical trials with small sample sizes across stages</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Shao, Jun ; Feng, Huaibao</creator><creatorcontrib>Shao, Jun ; Feng, Huaibao</creatorcontrib><description>Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages.</description><identifier>ISSN: 1551-7144</identifier><identifier>EISSN: 1559-2030</identifier><identifier>DOI: 10.1016/j.cct.2007.02.006</identifier><identifier>PMID: 17434814</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Biological and medical sciences ; Cardiovascular ; Clinical trial. Drug monitoring ; Clinical Trials as Topic - methods ; Clinical Trials as Topic - statistics &amp; numerical data ; Data Interpretation, Statistical ; General pharmacology ; Hematology, Oncology and Palliative Medicine ; Humans ; Interim analysis ; Medical sciences ; Monte Carlo Method ; Pharmacology. Drug treatments ; Research Design - statistics &amp; numerical data ; Sample Size ; Simulation ; t-statistic ; Type I error rate</subject><ispartof>Contemporary clinical trials, 2007-09, Vol.28 (5), p.563-571</ispartof><rights>Elsevier Inc.</rights><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</citedby><cites>FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cct.2007.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18998906$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17434814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Feng, Huaibao</creatorcontrib><title>Group sequential t -test for clinical trials with small sample sizes across stages</title><title>Contemporary clinical trials</title><addtitle>Contemp Clin Trials</addtitle><description>Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages.</description><subject>Biological and medical sciences</subject><subject>Cardiovascular</subject><subject>Clinical trial. Drug monitoring</subject><subject>Clinical Trials as Topic - methods</subject><subject>Clinical Trials as Topic - statistics &amp; numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>General pharmacology</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Interim analysis</subject><subject>Medical sciences</subject><subject>Monte Carlo Method</subject><subject>Pharmacology. Drug treatments</subject><subject>Research Design - statistics &amp; numerical data</subject><subject>Sample Size</subject><subject>Simulation</subject><subject>t-statistic</subject><subject>Type I error rate</subject><issn>1551-7144</issn><issn>1559-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSMEoqXwAbggX-gtYZzEjiMkpKqCglQJqYWz5UxmwUv-LB6nqHx6nN1FlThwsGzF741ffi_LXkooJEj9ZlsgxqIEaAooCwD9KDuVSrV5CRU83p9l3si6PsmeMW8BKq20epqdyKauaiPr0-zmKszLTjD9XGiK3g0iijwSR7GZg8DBTx7XjyFdsfjl43fBoxsGwW7cDSTY_yYWDsPMLDi6b8TPsyebJKYXx_0s-_rh_ZfLj_n156tPlxfXOdaVjnmpdNelHOQahxqcRN326R90hWkp5xqlCAwY3XTUIsoWTGkAe0TsJHXVWXZ-mLsLc0rP0Y6ekYbBTTQvbLWRqtRtm4TyINynDLSxu-BHF-6tBLuCtFubQNoVpIXSphDJ8-o4fOlG6h8cR3JJ8PoocJwIbYKb0PODzrStafeD3h50lFDceQqW0dOE1PtA6dF-9v-N8e4f999KftA98XZewpQYW2k5Gezt2vhaODSQ2i5N9QdHAaVX</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Shao, Jun</creator><creator>Feng, Huaibao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Group sequential t -test for clinical trials with small sample sizes across stages</title><author>Shao, Jun ; Feng, Huaibao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological and medical sciences</topic><topic>Cardiovascular</topic><topic>Clinical trial. Drug monitoring</topic><topic>Clinical Trials as Topic - methods</topic><topic>Clinical Trials as Topic - statistics &amp; numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>General pharmacology</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Interim analysis</topic><topic>Medical sciences</topic><topic>Monte Carlo Method</topic><topic>Pharmacology. Drug treatments</topic><topic>Research Design - statistics &amp; numerical data</topic><topic>Sample Size</topic><topic>Simulation</topic><topic>t-statistic</topic><topic>Type I error rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Feng, Huaibao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Contemporary clinical trials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jun</au><au>Feng, Huaibao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group sequential t -test for clinical trials with small sample sizes across stages</atitle><jtitle>Contemporary clinical trials</jtitle><addtitle>Contemp Clin Trials</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>28</volume><issue>5</issue><spage>563</spage><epage>571</epage><pages>563-571</pages><issn>1551-7144</issn><eissn>1559-2030</eissn><abstract>Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>17434814</pmid><doi>10.1016/j.cct.2007.02.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1551-7144
ispartof Contemporary clinical trials, 2007-09, Vol.28 (5), p.563-571
issn 1551-7144
1559-2030
language eng
recordid cdi_proquest_miscellaneous_68152699
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Biological and medical sciences
Cardiovascular
Clinical trial. Drug monitoring
Clinical Trials as Topic - methods
Clinical Trials as Topic - statistics & numerical data
Data Interpretation, Statistical
General pharmacology
Hematology, Oncology and Palliative Medicine
Humans
Interim analysis
Medical sciences
Monte Carlo Method
Pharmacology. Drug treatments
Research Design - statistics & numerical data
Sample Size
Simulation
t-statistic
Type I error rate
title Group sequential t -test for clinical trials with small sample sizes across stages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20sequential%20t%20-test%20for%20clinical%20trials%20with%20small%20sample%20sizes%20across%20stages&rft.jtitle=Contemporary%20clinical%20trials&rft.au=Shao,%20Jun&rft.date=2007-09-01&rft.volume=28&rft.issue=5&rft.spage=563&rft.epage=571&rft.pages=563-571&rft.issn=1551-7144&rft.eissn=1559-2030&rft_id=info:doi/10.1016/j.cct.2007.02.006&rft_dat=%3Cproquest_cross%3E68152699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68152699&rft_id=info:pmid/17434814&rft_els_id=S1551714407000328&rfr_iscdi=true