Group sequential t -test for clinical trials with small sample sizes across stages
Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests...
Gespeichert in:
Veröffentlicht in: | Contemporary clinical trials 2007-09, Vol.28 (5), p.563-571 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 5 |
container_start_page | 563 |
container_title | Contemporary clinical trials |
container_volume | 28 |
creator | Shao, Jun Feng, Huaibao |
description | Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages. |
doi_str_mv | 10.1016/j.cct.2007.02.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68152699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1551714407000328</els_id><sourcerecordid>68152699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwAbggX-gtYZzEjiMkpKqCglQJqYWz5UxmwUv-LB6nqHx6nN1FlThwsGzF741ffi_LXkooJEj9ZlsgxqIEaAooCwD9KDuVSrV5CRU83p9l3si6PsmeMW8BKq20epqdyKauaiPr0-zmKszLTjD9XGiK3g0iijwSR7GZg8DBTx7XjyFdsfjl43fBoxsGwW7cDSTY_yYWDsPMLDi6b8TPsyebJKYXx_0s-_rh_ZfLj_n156tPlxfXOdaVjnmpdNelHOQahxqcRN326R90hWkp5xqlCAwY3XTUIsoWTGkAe0TsJHXVWXZ-mLsLc0rP0Y6ekYbBTTQvbLWRqtRtm4TyINynDLSxu-BHF-6tBLuCtFubQNoVpIXSphDJ8-o4fOlG6h8cR3JJ8PoocJwIbYKb0PODzrStafeD3h50lFDceQqW0dOE1PtA6dF-9v-N8e4f999KftA98XZewpQYW2k5Gezt2vhaODSQ2i5N9QdHAaVX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68152699</pqid></control><display><type>article</type><title>Group sequential t -test for clinical trials with small sample sizes across stages</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Shao, Jun ; Feng, Huaibao</creator><creatorcontrib>Shao, Jun ; Feng, Huaibao</creatorcontrib><description>Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages.</description><identifier>ISSN: 1551-7144</identifier><identifier>EISSN: 1559-2030</identifier><identifier>DOI: 10.1016/j.cct.2007.02.006</identifier><identifier>PMID: 17434814</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Biological and medical sciences ; Cardiovascular ; Clinical trial. Drug monitoring ; Clinical Trials as Topic - methods ; Clinical Trials as Topic - statistics & numerical data ; Data Interpretation, Statistical ; General pharmacology ; Hematology, Oncology and Palliative Medicine ; Humans ; Interim analysis ; Medical sciences ; Monte Carlo Method ; Pharmacology. Drug treatments ; Research Design - statistics & numerical data ; Sample Size ; Simulation ; t-statistic ; Type I error rate</subject><ispartof>Contemporary clinical trials, 2007-09, Vol.28 (5), p.563-571</ispartof><rights>Elsevier Inc.</rights><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</citedby><cites>FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cct.2007.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18998906$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17434814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Feng, Huaibao</creatorcontrib><title>Group sequential t -test for clinical trials with small sample sizes across stages</title><title>Contemporary clinical trials</title><addtitle>Contemp Clin Trials</addtitle><description>Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages.</description><subject>Biological and medical sciences</subject><subject>Cardiovascular</subject><subject>Clinical trial. Drug monitoring</subject><subject>Clinical Trials as Topic - methods</subject><subject>Clinical Trials as Topic - statistics & numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>General pharmacology</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Interim analysis</subject><subject>Medical sciences</subject><subject>Monte Carlo Method</subject><subject>Pharmacology. Drug treatments</subject><subject>Research Design - statistics & numerical data</subject><subject>Sample Size</subject><subject>Simulation</subject><subject>t-statistic</subject><subject>Type I error rate</subject><issn>1551-7144</issn><issn>1559-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxSMEoqXwAbggX-gtYZzEjiMkpKqCglQJqYWz5UxmwUv-LB6nqHx6nN1FlThwsGzF741ffi_LXkooJEj9ZlsgxqIEaAooCwD9KDuVSrV5CRU83p9l3si6PsmeMW8BKq20epqdyKauaiPr0-zmKszLTjD9XGiK3g0iijwSR7GZg8DBTx7XjyFdsfjl43fBoxsGwW7cDSTY_yYWDsPMLDi6b8TPsyebJKYXx_0s-_rh_ZfLj_n156tPlxfXOdaVjnmpdNelHOQahxqcRN326R90hWkp5xqlCAwY3XTUIsoWTGkAe0TsJHXVWXZ-mLsLc0rP0Y6ekYbBTTQvbLWRqtRtm4TyINynDLSxu-BHF-6tBLuCtFubQNoVpIXSphDJ8-o4fOlG6h8cR3JJ8PoocJwIbYKb0PODzrStafeD3h50lFDceQqW0dOE1PtA6dF-9v-N8e4f999KftA98XZewpQYW2k5Gezt2vhaODSQ2i5N9QdHAaVX</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Shao, Jun</creator><creator>Feng, Huaibao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Group sequential t -test for clinical trials with small sample sizes across stages</title><author>Shao, Jun ; Feng, Huaibao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-256bb743ea7ac60a1c69d00663c6635aa755e080867be9cc1908280cdcccb1eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological and medical sciences</topic><topic>Cardiovascular</topic><topic>Clinical trial. Drug monitoring</topic><topic>Clinical Trials as Topic - methods</topic><topic>Clinical Trials as Topic - statistics & numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>General pharmacology</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Interim analysis</topic><topic>Medical sciences</topic><topic>Monte Carlo Method</topic><topic>Pharmacology. Drug treatments</topic><topic>Research Design - statistics & numerical data</topic><topic>Sample Size</topic><topic>Simulation</topic><topic>t-statistic</topic><topic>Type I error rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Feng, Huaibao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Contemporary clinical trials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Jun</au><au>Feng, Huaibao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group sequential t -test for clinical trials with small sample sizes across stages</atitle><jtitle>Contemporary clinical trials</jtitle><addtitle>Contemp Clin Trials</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>28</volume><issue>5</issue><spage>563</spage><epage>571</epage><pages>563-571</pages><issn>1551-7144</issn><eissn>1559-2030</eissn><abstract>Abstract Interim analyses are often applied in clinical trials for various reasons. To assess the effect of a clinical treatment, the group sequential t -test with a fixed number of interim analyses is frequently used in clinical trials. The existing critical values used in group sequential t -tests are obtained from normal approximations of t -statistics. In practice, however, normal approximation is not accurate when some sample sizes of treatment arms in some stages are small. In this paper, instead of using normal approximation, we directly obtain the critical values via a Monte Carlo method. We list some critical values for certain sample sizes and number of interim analyses, and provide some SAS code for general situations. We also consider the sample size calculation and run some simulations to check the accuracy of our critical values. The simulation results show that our critical values yield type I error probabilities that are very close to the nominal significance level, whereas the existing critical values based on normal approximation are not accurate when some sample sizes are small across stages.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>17434814</pmid><doi>10.1016/j.cct.2007.02.006</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-7144 |
ispartof | Contemporary clinical trials, 2007-09, Vol.28 (5), p.563-571 |
issn | 1551-7144 1559-2030 |
language | eng |
recordid | cdi_proquest_miscellaneous_68152699 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Biological and medical sciences Cardiovascular Clinical trial. Drug monitoring Clinical Trials as Topic - methods Clinical Trials as Topic - statistics & numerical data Data Interpretation, Statistical General pharmacology Hematology, Oncology and Palliative Medicine Humans Interim analysis Medical sciences Monte Carlo Method Pharmacology. Drug treatments Research Design - statistics & numerical data Sample Size Simulation t-statistic Type I error rate |
title | Group sequential t -test for clinical trials with small sample sizes across stages |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T12%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20sequential%20t%20-test%20for%20clinical%20trials%20with%20small%20sample%20sizes%20across%20stages&rft.jtitle=Contemporary%20clinical%20trials&rft.au=Shao,%20Jun&rft.date=2007-09-01&rft.volume=28&rft.issue=5&rft.spage=563&rft.epage=571&rft.pages=563-571&rft.issn=1551-7144&rft.eissn=1559-2030&rft_id=info:doi/10.1016/j.cct.2007.02.006&rft_dat=%3Cproquest_cross%3E68152699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68152699&rft_id=info:pmid/17434814&rft_els_id=S1551714407000328&rfr_iscdi=true |