Arabidopsis thaliana avoids freezing by supercooling

Arabidopsis thaliana (L.) Heynh. has been described as a freezing-tolerant species based on freezing-resistance assays. Nonetheless, this type of experiment does not discriminate between freezing-tolerance and freezing-avoidance mechanisms. The purpose of this paper was to determine which of these t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2006, Vol.57 (14), p.3687-3696
Hauptverfasser: Reyes-Díaz, Marjorie, Ulloa, Nancy, Zúñiga-Feest, Alejandra, Gutiérrez, Ana, Gidekel, Manuel, Alberdi, Miren, Corcuera, Luis J, Bravo, León A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3696
container_issue 14
container_start_page 3687
container_title Journal of experimental botany
container_volume 57
creator Reyes-Díaz, Marjorie
Ulloa, Nancy
Zúñiga-Feest, Alejandra
Gutiérrez, Ana
Gidekel, Manuel
Alberdi, Miren
Corcuera, Luis J
Bravo, León A
description Arabidopsis thaliana (L.) Heynh. has been described as a freezing-tolerant species based on freezing-resistance assays. Nonetheless, this type of experiment does not discriminate between freezing-tolerance and freezing-avoidance mechanisms. The purpose of this paper was to determine which of these two freezing-resistance mechanisms is responsible for freezing resistance in A. thaliana. This was achieved by comparing the thermal properties (ice-nucleation temperature and the freezing temperature) of leaves and the lethal temperature to 10, 50 and 90% of the plants (LT₁₀, LT₅₀, and LT₉₀, respectively). Two wild-type genotypes were used (Columbia and Ler) and their mutants (esk-1 and frs-1, respectively), which differ in their freezing resistance. This study's results indicated that the mutant esk-1, described as a freezing-tolerant species showed freezing tolerance only after a cold-acclimation period. The mutant frs-1, described as freezing sensitive, presented freezing avoidance. Both wild genotypes presented LT₅₀ similar to or higher than the ice-nucleation temperature. Thus, the main freezing-resistance mechanism for A. thaliana is avoidance of freezing by supercooling. No injury of the photosynthetic apparatus was shown by measuring the maximal photochemical efficiency (Fv/Fm) and pigments (chlorophyll and carotenoid) during cold acclimation in all genotypes. During cold acclimation, Columbia and esk-1 increased total soluble carbohydrates in leaves. esk-1 was the only genotype that presented freezing tolerance after cold acclimation. This feature could be related to an increase in sugar accumulation in the apoplast.
doi_str_mv 10.1093/jxb/erl125
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_68147968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24036292</jstor_id><sourcerecordid>24036292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-638b5d29cba1626e2cf21d71244c69bd6c3ba835deb5bbfce79edfb404d100683</originalsourceid><addsrcrecordid>eNpd0E1v1DAQBmALgehSuHAHIiQ4VAqd8VfiY1lot1KBA1SquFi245Qs2XhrJ6jl19clq1biZFnv4xnrJeQlwgcExQ7X1_bQxx6peEQWyCWUlDN8TBYAlJagRLVHnqW0BgABQjwleyiVAlbhgvCjaGzXhG3qUjH-Mn1nBlOYP6FrUtFG7_92w2Vhb4o0bX10IfT5_pw8aU2f_IvduU_Ojz__WK7Ks28np8ujs9JxKsdSstqKhipnDUoqPXUtxaZCyrmTyjbSMWtqJhpvhbWt85XyTWs58AYBZM32yft57jaGq8mnUW-65Hzfm8GHKWlZI6_UP_j2P7gOUxzy3zRlAhCwqjI6mJGLIaXoW72N3cbEG42g74rUuUg9F5nx693EyW5880B3zWXwbgdMcqZvoxlclx5czfJmebf11ezWaQzxPqccmKSK5ryc8y6N_vo-N_G3zq8roVcXP_Xygn49WX35pD9m_2b2rQnaXMa88_w7BWSAiBKAs1sMkJ1l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>235010177</pqid></control><display><type>article</type><title>Arabidopsis thaliana avoids freezing by supercooling</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Reyes-Díaz, Marjorie ; Ulloa, Nancy ; Zúñiga-Feest, Alejandra ; Gutiérrez, Ana ; Gidekel, Manuel ; Alberdi, Miren ; Corcuera, Luis J ; Bravo, León A</creator><creatorcontrib>Reyes-Díaz, Marjorie ; Ulloa, Nancy ; Zúñiga-Feest, Alejandra ; Gutiérrez, Ana ; Gidekel, Manuel ; Alberdi, Miren ; Corcuera, Luis J ; Bravo, León A</creatorcontrib><description>Arabidopsis thaliana (L.) Heynh. has been described as a freezing-tolerant species based on freezing-resistance assays. Nonetheless, this type of experiment does not discriminate between freezing-tolerance and freezing-avoidance mechanisms. The purpose of this paper was to determine which of these two freezing-resistance mechanisms is responsible for freezing resistance in A. thaliana. This was achieved by comparing the thermal properties (ice-nucleation temperature and the freezing temperature) of leaves and the lethal temperature to 10, 50 and 90% of the plants (LT₁₀, LT₅₀, and LT₉₀, respectively). Two wild-type genotypes were used (Columbia and Ler) and their mutants (esk-1 and frs-1, respectively), which differ in their freezing resistance. This study's results indicated that the mutant esk-1, described as a freezing-tolerant species showed freezing tolerance only after a cold-acclimation period. The mutant frs-1, described as freezing sensitive, presented freezing avoidance. Both wild genotypes presented LT₅₀ similar to or higher than the ice-nucleation temperature. Thus, the main freezing-resistance mechanism for A. thaliana is avoidance of freezing by supercooling. No injury of the photosynthetic apparatus was shown by measuring the maximal photochemical efficiency (Fv/Fm) and pigments (chlorophyll and carotenoid) during cold acclimation in all genotypes. During cold acclimation, Columbia and esk-1 increased total soluble carbohydrates in leaves. esk-1 was the only genotype that presented freezing tolerance after cold acclimation. This feature could be related to an increase in sugar accumulation in the apoplast.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erl125</identifier><identifier>PMID: 16990371</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>acclimation ; Acclimatization ; Apoplastic fluid ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - physiology ; Arabidopsis thaliana ; Biological and medical sciences ; carbohydrate content ; Carbohydrate Metabolism ; carotenoids ; chlorophyll ; chlorophyll fluorescence ; Chlorophylls ; cold acclimation ; cold stress ; Cold Temperature ; cold tolerance ; esk-1 ; Fluorescence ; Freezing ; freezing avoidance ; freezing point ; freezing tolerance ; frost ; frost injury ; frost resistance ; frs-1 ; Fundamental and applied biological sciences. Psychology ; Genes. Genome ; Genotype ; Genotypes ; Ice ; ice nucleation ; intercellular spaces ; Leaves ; Molecular and cellular biology ; Molecular genetics ; mortality ; mutants ; Mutation ; photosynthesis ; Photosynthesis - physiology ; Pigments, Biological - analysis ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant physiology ; Plants ; Research Papers ; sucrose ; Sugars ; supercooling ; total soluble sugars</subject><ispartof>Journal of experimental botany, 2006, Vol.57 (14), p.3687-3696</ispartof><rights>Society for Experimental Biology 2006</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Nov 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-638b5d29cba1626e2cf21d71244c69bd6c3ba835deb5bbfce79edfb404d100683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24036292$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24036292$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,4010,27900,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18323567$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16990371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyes-Díaz, Marjorie</creatorcontrib><creatorcontrib>Ulloa, Nancy</creatorcontrib><creatorcontrib>Zúñiga-Feest, Alejandra</creatorcontrib><creatorcontrib>Gutiérrez, Ana</creatorcontrib><creatorcontrib>Gidekel, Manuel</creatorcontrib><creatorcontrib>Alberdi, Miren</creatorcontrib><creatorcontrib>Corcuera, Luis J</creatorcontrib><creatorcontrib>Bravo, León A</creatorcontrib><title>Arabidopsis thaliana avoids freezing by supercooling</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>Arabidopsis thaliana (L.) Heynh. has been described as a freezing-tolerant species based on freezing-resistance assays. Nonetheless, this type of experiment does not discriminate between freezing-tolerance and freezing-avoidance mechanisms. The purpose of this paper was to determine which of these two freezing-resistance mechanisms is responsible for freezing resistance in A. thaliana. This was achieved by comparing the thermal properties (ice-nucleation temperature and the freezing temperature) of leaves and the lethal temperature to 10, 50 and 90% of the plants (LT₁₀, LT₅₀, and LT₉₀, respectively). Two wild-type genotypes were used (Columbia and Ler) and their mutants (esk-1 and frs-1, respectively), which differ in their freezing resistance. This study's results indicated that the mutant esk-1, described as a freezing-tolerant species showed freezing tolerance only after a cold-acclimation period. The mutant frs-1, described as freezing sensitive, presented freezing avoidance. Both wild genotypes presented LT₅₀ similar to or higher than the ice-nucleation temperature. Thus, the main freezing-resistance mechanism for A. thaliana is avoidance of freezing by supercooling. No injury of the photosynthetic apparatus was shown by measuring the maximal photochemical efficiency (Fv/Fm) and pigments (chlorophyll and carotenoid) during cold acclimation in all genotypes. During cold acclimation, Columbia and esk-1 increased total soluble carbohydrates in leaves. esk-1 was the only genotype that presented freezing tolerance after cold acclimation. This feature could be related to an increase in sugar accumulation in the apoplast.</description><subject>acclimation</subject><subject>Acclimatization</subject><subject>Apoplastic fluid</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>carbohydrate content</subject><subject>Carbohydrate Metabolism</subject><subject>carotenoids</subject><subject>chlorophyll</subject><subject>chlorophyll fluorescence</subject><subject>Chlorophylls</subject><subject>cold acclimation</subject><subject>cold stress</subject><subject>Cold Temperature</subject><subject>cold tolerance</subject><subject>esk-1</subject><subject>Fluorescence</subject><subject>Freezing</subject><subject>freezing avoidance</subject><subject>freezing point</subject><subject>freezing tolerance</subject><subject>frost</subject><subject>frost injury</subject><subject>frost resistance</subject><subject>frs-1</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes. Genome</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Ice</subject><subject>ice nucleation</subject><subject>intercellular spaces</subject><subject>Leaves</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>mortality</subject><subject>mutants</subject><subject>Mutation</subject><subject>photosynthesis</subject><subject>Photosynthesis - physiology</subject><subject>Pigments, Biological - analysis</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant physiology</subject><subject>Plants</subject><subject>Research Papers</subject><subject>sucrose</subject><subject>Sugars</subject><subject>supercooling</subject><subject>total soluble sugars</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0E1v1DAQBmALgehSuHAHIiQ4VAqd8VfiY1lot1KBA1SquFi245Qs2XhrJ6jl19clq1biZFnv4xnrJeQlwgcExQ7X1_bQxx6peEQWyCWUlDN8TBYAlJagRLVHnqW0BgABQjwleyiVAlbhgvCjaGzXhG3qUjH-Mn1nBlOYP6FrUtFG7_92w2Vhb4o0bX10IfT5_pw8aU2f_IvduU_Ojz__WK7Ks28np8ujs9JxKsdSstqKhipnDUoqPXUtxaZCyrmTyjbSMWtqJhpvhbWt85XyTWs58AYBZM32yft57jaGq8mnUW-65Hzfm8GHKWlZI6_UP_j2P7gOUxzy3zRlAhCwqjI6mJGLIaXoW72N3cbEG42g74rUuUg9F5nx693EyW5880B3zWXwbgdMcqZvoxlclx5czfJmebf11ezWaQzxPqccmKSK5ryc8y6N_vo-N_G3zq8roVcXP_Xygn49WX35pD9m_2b2rQnaXMa88_w7BWSAiBKAs1sMkJ1l</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Reyes-Díaz, Marjorie</creator><creator>Ulloa, Nancy</creator><creator>Zúñiga-Feest, Alejandra</creator><creator>Gutiérrez, Ana</creator><creator>Gidekel, Manuel</creator><creator>Alberdi, Miren</creator><creator>Corcuera, Luis J</creator><creator>Bravo, León A</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2006</creationdate><title>Arabidopsis thaliana avoids freezing by supercooling</title><author>Reyes-Díaz, Marjorie ; Ulloa, Nancy ; Zúñiga-Feest, Alejandra ; Gutiérrez, Ana ; Gidekel, Manuel ; Alberdi, Miren ; Corcuera, Luis J ; Bravo, León A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-638b5d29cba1626e2cf21d71244c69bd6c3ba835deb5bbfce79edfb404d100683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>acclimation</topic><topic>Acclimatization</topic><topic>Apoplastic fluid</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>carbohydrate content</topic><topic>Carbohydrate Metabolism</topic><topic>carotenoids</topic><topic>chlorophyll</topic><topic>chlorophyll fluorescence</topic><topic>Chlorophylls</topic><topic>cold acclimation</topic><topic>cold stress</topic><topic>Cold Temperature</topic><topic>cold tolerance</topic><topic>esk-1</topic><topic>Fluorescence</topic><topic>Freezing</topic><topic>freezing avoidance</topic><topic>freezing point</topic><topic>freezing tolerance</topic><topic>frost</topic><topic>frost injury</topic><topic>frost resistance</topic><topic>frs-1</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes. Genome</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Ice</topic><topic>ice nucleation</topic><topic>intercellular spaces</topic><topic>Leaves</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>mortality</topic><topic>mutants</topic><topic>Mutation</topic><topic>photosynthesis</topic><topic>Photosynthesis - physiology</topic><topic>Pigments, Biological - analysis</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant physiology</topic><topic>Plants</topic><topic>Research Papers</topic><topic>sucrose</topic><topic>Sugars</topic><topic>supercooling</topic><topic>total soluble sugars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes-Díaz, Marjorie</creatorcontrib><creatorcontrib>Ulloa, Nancy</creatorcontrib><creatorcontrib>Zúñiga-Feest, Alejandra</creatorcontrib><creatorcontrib>Gutiérrez, Ana</creatorcontrib><creatorcontrib>Gidekel, Manuel</creatorcontrib><creatorcontrib>Alberdi, Miren</creatorcontrib><creatorcontrib>Corcuera, Luis J</creatorcontrib><creatorcontrib>Bravo, León A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes-Díaz, Marjorie</au><au>Ulloa, Nancy</au><au>Zúñiga-Feest, Alejandra</au><au>Gutiérrez, Ana</au><au>Gidekel, Manuel</au><au>Alberdi, Miren</au><au>Corcuera, Luis J</au><au>Bravo, León A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis thaliana avoids freezing by supercooling</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2006</date><risdate>2006</risdate><volume>57</volume><issue>14</issue><spage>3687</spage><epage>3696</epage><pages>3687-3696</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><abstract>Arabidopsis thaliana (L.) Heynh. has been described as a freezing-tolerant species based on freezing-resistance assays. Nonetheless, this type of experiment does not discriminate between freezing-tolerance and freezing-avoidance mechanisms. The purpose of this paper was to determine which of these two freezing-resistance mechanisms is responsible for freezing resistance in A. thaliana. This was achieved by comparing the thermal properties (ice-nucleation temperature and the freezing temperature) of leaves and the lethal temperature to 10, 50 and 90% of the plants (LT₁₀, LT₅₀, and LT₉₀, respectively). Two wild-type genotypes were used (Columbia and Ler) and their mutants (esk-1 and frs-1, respectively), which differ in their freezing resistance. This study's results indicated that the mutant esk-1, described as a freezing-tolerant species showed freezing tolerance only after a cold-acclimation period. The mutant frs-1, described as freezing sensitive, presented freezing avoidance. Both wild genotypes presented LT₅₀ similar to or higher than the ice-nucleation temperature. Thus, the main freezing-resistance mechanism for A. thaliana is avoidance of freezing by supercooling. No injury of the photosynthetic apparatus was shown by measuring the maximal photochemical efficiency (Fv/Fm) and pigments (chlorophyll and carotenoid) during cold acclimation in all genotypes. During cold acclimation, Columbia and esk-1 increased total soluble carbohydrates in leaves. esk-1 was the only genotype that presented freezing tolerance after cold acclimation. This feature could be related to an increase in sugar accumulation in the apoplast.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>16990371</pmid><doi>10.1093/jxb/erl125</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2006, Vol.57 (14), p.3687-3696
issn 0022-0957
1460-2431
language eng
recordid cdi_proquest_miscellaneous_68147968
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects acclimation
Acclimatization
Apoplastic fluid
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - physiology
Arabidopsis thaliana
Biological and medical sciences
carbohydrate content
Carbohydrate Metabolism
carotenoids
chlorophyll
chlorophyll fluorescence
Chlorophylls
cold acclimation
cold stress
Cold Temperature
cold tolerance
esk-1
Fluorescence
Freezing
freezing avoidance
freezing point
freezing tolerance
frost
frost injury
frost resistance
frs-1
Fundamental and applied biological sciences. Psychology
Genes. Genome
Genotype
Genotypes
Ice
ice nucleation
intercellular spaces
Leaves
Molecular and cellular biology
Molecular genetics
mortality
mutants
Mutation
photosynthesis
Photosynthesis - physiology
Pigments, Biological - analysis
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Leaves - physiology
Plant physiology
Plants
Research Papers
sucrose
Sugars
supercooling
total soluble sugars
title Arabidopsis thaliana avoids freezing by supercooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20thaliana%20avoids%20freezing%20by%20supercooling&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Reyes-D%C3%ADaz,%20Marjorie&rft.date=2006&rft.volume=57&rft.issue=14&rft.spage=3687&rft.epage=3696&rft.pages=3687-3696&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/erl125&rft_dat=%3Cjstor_proqu%3E24036292%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=235010177&rft_id=info:pmid/16990371&rft_jstor_id=24036292&rfr_iscdi=true