Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach

Contrary to the approach of Reitsma et al., our approach does not require and to be large and ; such that the variances of the estimated logit transformed Se and Sp for each study can be approximated by and . [...]the generalized linear mixed model approach does not require an ad hoc continuity corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2006-12, Vol.59 (12), p.1331-1332
Hauptverfasser: Chu, Haitao, Cole, Stephen R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1332
container_issue 12
container_start_page 1331
container_title Journal of clinical epidemiology
container_volume 59
creator Chu, Haitao
Cole, Stephen R.
description Contrary to the approach of Reitsma et al., our approach does not require and to be large and ; such that the variances of the estimated logit transformed Se and Sp for each study can be approximated by and . [...]the generalized linear mixed model approach does not require an ad hoc continuity correction when the number of true positives, true negatives, false positives, or false negatives is zero in a study. The correlation between sensitivity and specificity is estimated as suggesting moderate negative correlation between Se and Sp, with 95% confidence interval of -0.78, -0.05 by assuming normality on Fisher's z transformation of that is, normality on , and using the delta method in SAS NLMIXED to compute the variance of Fisher's z. Simulation studies were conducted to evaluate the performance of the generalized vs. general linear random effects models for bivariate analysis of Se and Sp.
doi_str_mv 10.1016/j.jclinepi.2006.06.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68140780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435606002460</els_id><sourcerecordid>68140780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-acf5c404e3d911e85a845691ccaa306a414976afe4e7f35497c23d20982a5e2a3</originalsourceid><addsrcrecordid>eNqFkV1rFTEQhoMo9lj9CyUgeLfHZDfZ7HqlLdoKhd7U6zAms3aW_TLJOXr665vlHBG8EQaGNzzzkXkZu5BiK4Ws3_fb3g004ULbUoh6u4aUz9hGNqYpdFvK52wjmlYXqtL1GXsVYy-ENMLol-ws57bRxmxYuKQ9BIKEfMQEBUwwHCJFPnc84hQp0Z7SgcPkeVzQUUdu1b8oPeQHCBG5hwQfOPAfOGGAgR7R83U3CHyk31mMs8eBw7KEGdzDa_aigyHim1M-Z9--fL6_uilu766_Xn26LZxSJhXgOu2UUFj5VkpsNDRK1610DqASNSipWlNDhwpNV-ksXFn5Mn-sBI0lVOfs3bFvHvtzhzHZkaLDYYAJ5120dSOVMI3I4Nt_wH7ehXyIaKWoKtmIvEam6iPlwhxjwM4ugUYIhwzZ1RPb2z-e2NUTu4aUufDi1H73fUT_t-xkQgY-HgHM19gTBhsd4eTQU0CXrJ_pfzOeAKJwoeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033180404</pqid></control><display><type>article</type><title>Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Chu, Haitao ; Cole, Stephen R.</creator><creatorcontrib>Chu, Haitao ; Cole, Stephen R.</creatorcontrib><description>Contrary to the approach of Reitsma et al., our approach does not require and to be large and ; such that the variances of the estimated logit transformed Se and Sp for each study can be approximated by and . [...]the generalized linear mixed model approach does not require an ad hoc continuity correction when the number of true positives, true negatives, false positives, or false negatives is zero in a study. The correlation between sensitivity and specificity is estimated as suggesting moderate negative correlation between Se and Sp, with 95% confidence interval of -0.78, -0.05 by assuming normality on Fisher's z transformation of that is, normality on , and using the delta method in SAS NLMIXED to compute the variance of Fisher's z. Simulation studies were conducted to evaluate the performance of the generalized vs. general linear random effects models for bivariate analysis of Se and Sp.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2006.06.011</identifier><identifier>PMID: 17098577</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binomial distribution ; Confidence intervals ; Data Interpretation, Statistical ; Diagnostic Techniques and Procedures ; Epidemiology ; Humans ; Meta-analysis ; Meta-Analysis as Topic ; Sensitivity analysis ; Sensitivity and Specificity ; Studies</subject><ispartof>Journal of clinical epidemiology, 2006-12, Vol.59 (12), p.1331-1332</ispartof><rights>2006 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-acf5c404e3d911e85a845691ccaa306a414976afe4e7f35497c23d20982a5e2a3</citedby><cites>FETCH-LOGICAL-c447t-acf5c404e3d911e85a845691ccaa306a414976afe4e7f35497c23d20982a5e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1033180404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17098577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Haitao</creatorcontrib><creatorcontrib>Cole, Stephen R.</creatorcontrib><title>Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Contrary to the approach of Reitsma et al., our approach does not require and to be large and ; such that the variances of the estimated logit transformed Se and Sp for each study can be approximated by and . [...]the generalized linear mixed model approach does not require an ad hoc continuity correction when the number of true positives, true negatives, false positives, or false negatives is zero in a study. The correlation between sensitivity and specificity is estimated as suggesting moderate negative correlation between Se and Sp, with 95% confidence interval of -0.78, -0.05 by assuming normality on Fisher's z transformation of that is, normality on , and using the delta method in SAS NLMIXED to compute the variance of Fisher's z. Simulation studies were conducted to evaluate the performance of the generalized vs. general linear random effects models for bivariate analysis of Se and Sp.</description><subject>Binomial distribution</subject><subject>Confidence intervals</subject><subject>Data Interpretation, Statistical</subject><subject>Diagnostic Techniques and Procedures</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1rFTEQhoMo9lj9CyUgeLfHZDfZ7HqlLdoKhd7U6zAms3aW_TLJOXr665vlHBG8EQaGNzzzkXkZu5BiK4Ws3_fb3g004ULbUoh6u4aUz9hGNqYpdFvK52wjmlYXqtL1GXsVYy-ENMLol-ws57bRxmxYuKQ9BIKEfMQEBUwwHCJFPnc84hQp0Z7SgcPkeVzQUUdu1b8oPeQHCBG5hwQfOPAfOGGAgR7R83U3CHyk31mMs8eBw7KEGdzDa_aigyHim1M-Z9--fL6_uilu766_Xn26LZxSJhXgOu2UUFj5VkpsNDRK1610DqASNSipWlNDhwpNV-ksXFn5Mn-sBI0lVOfs3bFvHvtzhzHZkaLDYYAJ5120dSOVMI3I4Nt_wH7ehXyIaKWoKtmIvEam6iPlwhxjwM4ugUYIhwzZ1RPb2z-e2NUTu4aUufDi1H73fUT_t-xkQgY-HgHM19gTBhsd4eTQU0CXrJ_pfzOeAKJwoeg</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Chu, Haitao</creator><creator>Cole, Stephen R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach</title><author>Chu, Haitao ; Cole, Stephen R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-acf5c404e3d911e85a845691ccaa306a414976afe4e7f35497c23d20982a5e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Binomial distribution</topic><topic>Confidence intervals</topic><topic>Data Interpretation, Statistical</topic><topic>Diagnostic Techniques and Procedures</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Haitao</creatorcontrib><creatorcontrib>Cole, Stephen R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Haitao</au><au>Cole, Stephen R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>59</volume><issue>12</issue><spage>1331</spage><epage>1332</epage><pages>1331-1332</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Contrary to the approach of Reitsma et al., our approach does not require and to be large and ; such that the variances of the estimated logit transformed Se and Sp for each study can be approximated by and . [...]the generalized linear mixed model approach does not require an ad hoc continuity correction when the number of true positives, true negatives, false positives, or false negatives is zero in a study. The correlation between sensitivity and specificity is estimated as suggesting moderate negative correlation between Se and Sp, with 95% confidence interval of -0.78, -0.05 by assuming normality on Fisher's z transformation of that is, normality on , and using the delta method in SAS NLMIXED to compute the variance of Fisher's z. Simulation studies were conducted to evaluate the performance of the generalized vs. general linear random effects models for bivariate analysis of Se and Sp.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17098577</pmid><doi>10.1016/j.jclinepi.2006.06.011</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4356
ispartof Journal of clinical epidemiology, 2006-12, Vol.59 (12), p.1331-1332
issn 0895-4356
1878-5921
language eng
recordid cdi_proquest_miscellaneous_68140780
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Binomial distribution
Confidence intervals
Data Interpretation, Statistical
Diagnostic Techniques and Procedures
Epidemiology
Humans
Meta-analysis
Meta-Analysis as Topic
Sensitivity analysis
Sensitivity and Specificity
Studies
title Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A06%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bivariate%20meta-analysis%20of%20sensitivity%20and%20specificity%20with%20sparse%20data:%20a%20generalized%20linear%20mixed%20model%20approach&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Chu,%20Haitao&rft.date=2006-12-01&rft.volume=59&rft.issue=12&rft.spage=1331&rft.epage=1332&rft.pages=1331-1332&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2006.06.011&rft_dat=%3Cproquest_cross%3E68140780%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1033180404&rft_id=info:pmid/17098577&rft_els_id=S0895435606002460&rfr_iscdi=true