An evolutionary Michigan recurrent fuzzy system for nuclei classification in cytological images using nuclear chromatin distribution

The objective of this research is to carry out the classification of cellular nuclei in cytological pleural fluid images. The article focuses on the feature extraction and classification processes. The extracted feature is a spatial measurement of the chromatin distribution in cellular nuclei. The d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical informatics 2006-12, Vol.39 (6), p.573-588
Hauptverfasser: Alayón, S., Estévez, J.I., Sigut, J., Sánchez, J.L., Toledo, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 6
container_start_page 573
container_title Journal of biomedical informatics
container_volume 39
creator Alayón, S.
Estévez, J.I.
Sigut, J.
Sánchez, J.L.
Toledo, P.
description The objective of this research is to carry out the classification of cellular nuclei in cytological pleural fluid images. The article focuses on the feature extraction and classification processes. The extracted feature is a spatial measurement of the chromatin distribution in cellular nuclei. The designed classifiers are fuzzy classifiers that carry out supervised classification. The classifier system’s inputs are data series that represent these texture measurements. The classifier is built on a Recurrent Fuzzy System (RFS). An evolutionary algorithm inspired by the Michigan approach is used to find an optimal RFS to classify different patterns expressed as data series. The effectiveness of the proposed classifier system is compared with other existing classification methods and evaluated via Receiver Operating Characteristic (ROC) analysis. We have obtained RFS based classifiers that perform with sensitivity values between 82.26 and 93.55% and with specificity values between 80.65 and 90.32%. The behavior of the proposed chromatin measurement is also compared with other texture measurements. The RFS based classifiers were successfully applied to the proposed data series that represent the chromatin distribution in cellular nuclei. These fuzzy classifiers present the highest classification efficiency and the ROC analysis confirms their suitable behavior.
doi_str_mv 10.1016/j.jbi.2006.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68137540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S153204640600044X</els_id><sourcerecordid>68137540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d9b075ed59b41ea355d35968de4c5f264c23bfb814db37394c2aad8283a7e3333</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi1ERR_wA9ggr9hNsONHErGqqkKRirpp15Zj30zvKLGLnVRK1_xwPMwIdmBZ8rV1vmvZh5D3nFWccf1pV-16rGrGdMVExRh_Rc64EvWGyZa9_lNreUrOc94VgCul35BTrnUtyzwjPy8Dhec4LjPGYNNKv6N7xK0NNIFbUoIw02F5eVlpXvMMEx1iomFxIyB1o80ZB3R2H6YYqFvnOMZtORkpTnYLmS4Zw_aQsIm6xxSnggfqMc8J-9_3viUngx0zvDuuF-Thy_X91c3m9u7rt6vL242TtZo3vutZo8CrrpccrFDKC9Xp1oN0aqi1dLXoh77l0veiEV3ZW-vbuhW2AVHGBfl46PuU4o8F8mwmzA7G0QaISza65aJRkv0X5J1s6oapAvID6FLMOcFgnlJ5eFoNZ2bvyOxMcWT2jgwTpigomQ_H5ks_gf-bOEopwOcDAOUvnhGSyQ4hOPBYpMzGR_xH-18aDaVd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19472705</pqid></control><display><type>article</type><title>An evolutionary Michigan recurrent fuzzy system for nuclei classification in cytological images using nuclear chromatin distribution</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alayón, S. ; Estévez, J.I. ; Sigut, J. ; Sánchez, J.L. ; Toledo, P.</creator><creatorcontrib>Alayón, S. ; Estévez, J.I. ; Sigut, J. ; Sánchez, J.L. ; Toledo, P.</creatorcontrib><description>The objective of this research is to carry out the classification of cellular nuclei in cytological pleural fluid images. The article focuses on the feature extraction and classification processes. The extracted feature is a spatial measurement of the chromatin distribution in cellular nuclei. The designed classifiers are fuzzy classifiers that carry out supervised classification. The classifier system’s inputs are data series that represent these texture measurements. The classifier is built on a Recurrent Fuzzy System (RFS). An evolutionary algorithm inspired by the Michigan approach is used to find an optimal RFS to classify different patterns expressed as data series. The effectiveness of the proposed classifier system is compared with other existing classification methods and evaluated via Receiver Operating Characteristic (ROC) analysis. We have obtained RFS based classifiers that perform with sensitivity values between 82.26 and 93.55% and with specificity values between 80.65 and 90.32%. The behavior of the proposed chromatin measurement is also compared with other texture measurements. The RFS based classifiers were successfully applied to the proposed data series that represent the chromatin distribution in cellular nuclei. These fuzzy classifiers present the highest classification efficiency and the ROC analysis confirms their suitable behavior.</description><identifier>ISSN: 1532-0464</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2006.03.001</identifier><identifier>PMID: 16624624</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Carcinoma - pathology ; Cell Biology - standards ; Cell Nucleus - metabolism ; Cell Nucleus - pathology ; Chromatin - chemistry ; Computational Biology - methods ; Cytological images ; Epithelium - pathology ; Evolution, Molecular ; Fuzzy Logic ; Genetic algorithm ; Humans ; Markov Chains ; Models, Theoretical ; Nuclei chromatin distribution ; Nuclei classification ; Pattern recognition ; Probability ; Recurrent fuzzy system ; ROC analysis ; ROC Curve ; Sensitivity and Specificity</subject><ispartof>Journal of biomedical informatics, 2006-12, Vol.39 (6), p.573-588</ispartof><rights>2006 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d9b075ed59b41ea355d35968de4c5f264c23bfb814db37394c2aad8283a7e3333</citedby><cites>FETCH-LOGICAL-c425t-d9b075ed59b41ea355d35968de4c5f264c23bfb814db37394c2aad8283a7e3333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jbi.2006.03.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16624624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alayón, S.</creatorcontrib><creatorcontrib>Estévez, J.I.</creatorcontrib><creatorcontrib>Sigut, J.</creatorcontrib><creatorcontrib>Sánchez, J.L.</creatorcontrib><creatorcontrib>Toledo, P.</creatorcontrib><title>An evolutionary Michigan recurrent fuzzy system for nuclei classification in cytological images using nuclear chromatin distribution</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>The objective of this research is to carry out the classification of cellular nuclei in cytological pleural fluid images. The article focuses on the feature extraction and classification processes. The extracted feature is a spatial measurement of the chromatin distribution in cellular nuclei. The designed classifiers are fuzzy classifiers that carry out supervised classification. The classifier system’s inputs are data series that represent these texture measurements. The classifier is built on a Recurrent Fuzzy System (RFS). An evolutionary algorithm inspired by the Michigan approach is used to find an optimal RFS to classify different patterns expressed as data series. The effectiveness of the proposed classifier system is compared with other existing classification methods and evaluated via Receiver Operating Characteristic (ROC) analysis. We have obtained RFS based classifiers that perform with sensitivity values between 82.26 and 93.55% and with specificity values between 80.65 and 90.32%. The behavior of the proposed chromatin measurement is also compared with other texture measurements. The RFS based classifiers were successfully applied to the proposed data series that represent the chromatin distribution in cellular nuclei. These fuzzy classifiers present the highest classification efficiency and the ROC analysis confirms their suitable behavior.</description><subject>Algorithms</subject><subject>Carcinoma - pathology</subject><subject>Cell Biology - standards</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus - pathology</subject><subject>Chromatin - chemistry</subject><subject>Computational Biology - methods</subject><subject>Cytological images</subject><subject>Epithelium - pathology</subject><subject>Evolution, Molecular</subject><subject>Fuzzy Logic</subject><subject>Genetic algorithm</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Models, Theoretical</subject><subject>Nuclei chromatin distribution</subject><subject>Nuclei classification</subject><subject>Pattern recognition</subject><subject>Probability</subject><subject>Recurrent fuzzy system</subject><subject>ROC analysis</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><issn>1532-0464</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi1ERR_wA9ggr9hNsONHErGqqkKRirpp15Zj30zvKLGLnVRK1_xwPMwIdmBZ8rV1vmvZh5D3nFWccf1pV-16rGrGdMVExRh_Rc64EvWGyZa9_lNreUrOc94VgCul35BTrnUtyzwjPy8Dhec4LjPGYNNKv6N7xK0NNIFbUoIw02F5eVlpXvMMEx1iomFxIyB1o80ZB3R2H6YYqFvnOMZtORkpTnYLmS4Zw_aQsIm6xxSnggfqMc8J-9_3viUngx0zvDuuF-Thy_X91c3m9u7rt6vL242TtZo3vutZo8CrrpccrFDKC9Xp1oN0aqi1dLXoh77l0veiEV3ZW-vbuhW2AVHGBfl46PuU4o8F8mwmzA7G0QaISza65aJRkv0X5J1s6oapAvID6FLMOcFgnlJ5eFoNZ2bvyOxMcWT2jgwTpigomQ_H5ks_gf-bOEopwOcDAOUvnhGSyQ4hOPBYpMzGR_xH-18aDaVd</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Alayón, S.</creator><creator>Estévez, J.I.</creator><creator>Sigut, J.</creator><creator>Sánchez, J.L.</creator><creator>Toledo, P.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>An evolutionary Michigan recurrent fuzzy system for nuclei classification in cytological images using nuclear chromatin distribution</title><author>Alayón, S. ; Estévez, J.I. ; Sigut, J. ; Sánchez, J.L. ; Toledo, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d9b075ed59b41ea355d35968de4c5f264c23bfb814db37394c2aad8283a7e3333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Carcinoma - pathology</topic><topic>Cell Biology - standards</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus - pathology</topic><topic>Chromatin - chemistry</topic><topic>Computational Biology - methods</topic><topic>Cytological images</topic><topic>Epithelium - pathology</topic><topic>Evolution, Molecular</topic><topic>Fuzzy Logic</topic><topic>Genetic algorithm</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Models, Theoretical</topic><topic>Nuclei chromatin distribution</topic><topic>Nuclei classification</topic><topic>Pattern recognition</topic><topic>Probability</topic><topic>Recurrent fuzzy system</topic><topic>ROC analysis</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alayón, S.</creatorcontrib><creatorcontrib>Estévez, J.I.</creatorcontrib><creatorcontrib>Sigut, J.</creatorcontrib><creatorcontrib>Sánchez, J.L.</creatorcontrib><creatorcontrib>Toledo, P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alayón, S.</au><au>Estévez, J.I.</au><au>Sigut, J.</au><au>Sánchez, J.L.</au><au>Toledo, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An evolutionary Michigan recurrent fuzzy system for nuclei classification in cytological images using nuclear chromatin distribution</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>39</volume><issue>6</issue><spage>573</spage><epage>588</epage><pages>573-588</pages><issn>1532-0464</issn><eissn>1532-0480</eissn><abstract>The objective of this research is to carry out the classification of cellular nuclei in cytological pleural fluid images. The article focuses on the feature extraction and classification processes. The extracted feature is a spatial measurement of the chromatin distribution in cellular nuclei. The designed classifiers are fuzzy classifiers that carry out supervised classification. The classifier system’s inputs are data series that represent these texture measurements. The classifier is built on a Recurrent Fuzzy System (RFS). An evolutionary algorithm inspired by the Michigan approach is used to find an optimal RFS to classify different patterns expressed as data series. The effectiveness of the proposed classifier system is compared with other existing classification methods and evaluated via Receiver Operating Characteristic (ROC) analysis. We have obtained RFS based classifiers that perform with sensitivity values between 82.26 and 93.55% and with specificity values between 80.65 and 90.32%. The behavior of the proposed chromatin measurement is also compared with other texture measurements. The RFS based classifiers were successfully applied to the proposed data series that represent the chromatin distribution in cellular nuclei. These fuzzy classifiers present the highest classification efficiency and the ROC analysis confirms their suitable behavior.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16624624</pmid><doi>10.1016/j.jbi.2006.03.001</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2006-12, Vol.39 (6), p.573-588
issn 1532-0464
1532-0480
language eng
recordid cdi_proquest_miscellaneous_68137540
source MEDLINE; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Carcinoma - pathology
Cell Biology - standards
Cell Nucleus - metabolism
Cell Nucleus - pathology
Chromatin - chemistry
Computational Biology - methods
Cytological images
Epithelium - pathology
Evolution, Molecular
Fuzzy Logic
Genetic algorithm
Humans
Markov Chains
Models, Theoretical
Nuclei chromatin distribution
Nuclei classification
Pattern recognition
Probability
Recurrent fuzzy system
ROC analysis
ROC Curve
Sensitivity and Specificity
title An evolutionary Michigan recurrent fuzzy system for nuclei classification in cytological images using nuclear chromatin distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20evolutionary%20Michigan%20recurrent%20fuzzy%20system%20for%20nuclei%20classification%20in%20cytological%20images%20using%20nuclear%20chromatin%20distribution&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Alay%C3%B3n,%20S.&rft.date=2006-12-01&rft.volume=39&rft.issue=6&rft.spage=573&rft.epage=588&rft.pages=573-588&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2006.03.001&rft_dat=%3Cproquest_cross%3E68137540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19472705&rft_id=info:pmid/16624624&rft_els_id=S153204640600044X&rfr_iscdi=true