Comparison of MR-thermography and planning calculations in phantoms
A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed 2 × 6 experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different pattern...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2006-10, Vol.33 (10), p.3912-3920 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3920 |
---|---|
container_issue | 10 |
container_start_page | 3912 |
container_title | Medical physics (Lancaster) |
container_volume | 33 |
creator | Gellermann, J. Weihrauch, M. Cho, C. H. Wlodarczyk, W. Fähling, H. Felix, R. Budach, V. Weiser, M. Nadobny, J. Wust, P. |
description | A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed
2
×
6
experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony,
1.5
Tesla
). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of
0.5
cm
size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2–
3
W
∕
kg
, i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30–
40
°
and HT amplitude corrections of
±
20
–
30
%
are required for the best agreement. The deviation
∣
MR-FDTD
∣
, and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters. |
doi_str_mv | 10.1118/1.2348761 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68132844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68132844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4Mobk4PfgHpSVDozNukaXoRZPgPNpSh55Cm6VZpm5p0yr690RXmZeLpvTzvw48HoVPAYwDgVzCOCOUJgz00jGhCQhrhdB8NMU5pGFEcD9CRc28YY0ZifIgGkGCe8pgM0WRi6lba0pkmMEUwm4fdUtvaLKxsl-tANnnQVrJpymYRKFmpVSW70jQuKJugXcqmM7U7RgeFrJw-6e8Ivd7dvkwewunT_ePkZhoqShmETOtMsSyJ0gziLOdca5UlQGOeqkgnMXDmMcL8sgxkHgOkfifLiAYoSM7ICJ1vvK017yvtOlGXTunK79Nm5QTjQCJOqQcvNqCyxjmrC9HaspZ2LQCL72ICRF_Ms2e9dJXVOt-SfSIPhBvgs6z0erdJzJ574fWGd6rsfmLt_tnGF6YQs7nw8b3g8t-Cv-APY3-ta_OCfAGGtaP-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68132844</pqid></control><display><type>article</type><title>Comparison of MR-thermography and planning calculations in phantoms</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gellermann, J. ; Weihrauch, M. ; Cho, C. H. ; Wlodarczyk, W. ; Fähling, H. ; Felix, R. ; Budach, V. ; Weiser, M. ; Nadobny, J. ; Wust, P.</creator><creatorcontrib>Gellermann, J. ; Weihrauch, M. ; Cho, C. H. ; Wlodarczyk, W. ; Fähling, H. ; Felix, R. ; Budach, V. ; Weiser, M. ; Nadobny, J. ; Wust, P.</creatorcontrib><description>A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed
2
×
6
experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony,
1.5
Tesla
). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of
0.5
cm
size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2–
3
W
∕
kg
, i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30–
40
°
and HT amplitude corrections of
±
20
–
30
%
are required for the best agreement. The deviation
∣
MR-FDTD
∣
, and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2348761</identifier><identifier>PMID: 17089853</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; annular-phased array ; Antennas ; biomedical MRI ; Biothermics and thermal processes in biology ; Clinical applications ; Computer Simulation ; Computer software ; Finite difference time domain calculations ; finite difference time‐domain analysis ; Finite‐difference methods ; Hot Temperature ; Humans ; hyperthermia ; hyperthermia planning ; image segmentation ; Imaging, Three-Dimensional ; infrared imaging ; interpolation ; Interpolation; curve fitting ; Magnetic resonance ; Magnetic Resonance Imaging - methods ; magnetic resonance thermography ; Magnetoresistance ; Models, Statistical ; Numerical modeling ; phantom ; phantoms ; Phantoms, Imaging ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted ; Silicon ; Silicon - chemistry ; Standard Model ; Temperature ; Therapeutic applications ; Thermography ; Thermography - methods</subject><ispartof>Medical physics (Lancaster), 2006-10, Vol.33 (10), p.3912-3920</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2006 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</citedby><cites>FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2348761$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2348761$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17089853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gellermann, J.</creatorcontrib><creatorcontrib>Weihrauch, M.</creatorcontrib><creatorcontrib>Cho, C. H.</creatorcontrib><creatorcontrib>Wlodarczyk, W.</creatorcontrib><creatorcontrib>Fähling, H.</creatorcontrib><creatorcontrib>Felix, R.</creatorcontrib><creatorcontrib>Budach, V.</creatorcontrib><creatorcontrib>Weiser, M.</creatorcontrib><creatorcontrib>Nadobny, J.</creatorcontrib><creatorcontrib>Wust, P.</creatorcontrib><title>Comparison of MR-thermography and planning calculations in phantoms</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed
2
×
6
experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony,
1.5
Tesla
). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of
0.5
cm
size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2–
3
W
∕
kg
, i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30–
40
°
and HT amplitude corrections of
±
20
–
30
%
are required for the best agreement. The deviation
∣
MR-FDTD
∣
, and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters.</description><subject>Algorithms</subject><subject>annular-phased array</subject><subject>Antennas</subject><subject>biomedical MRI</subject><subject>Biothermics and thermal processes in biology</subject><subject>Clinical applications</subject><subject>Computer Simulation</subject><subject>Computer software</subject><subject>Finite difference time domain calculations</subject><subject>finite difference time‐domain analysis</subject><subject>Finite‐difference methods</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>hyperthermia</subject><subject>hyperthermia planning</subject><subject>image segmentation</subject><subject>Imaging, Three-Dimensional</subject><subject>infrared imaging</subject><subject>interpolation</subject><subject>Interpolation; curve fitting</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>magnetic resonance thermography</subject><subject>Magnetoresistance</subject><subject>Models, Statistical</subject><subject>Numerical modeling</subject><subject>phantom</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Standard Model</subject><subject>Temperature</subject><subject>Therapeutic applications</subject><subject>Thermography</subject><subject>Thermography - methods</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9LwzAYh4Mobk4PfgHpSVDozNukaXoRZPgPNpSh55Cm6VZpm5p0yr690RXmZeLpvTzvw48HoVPAYwDgVzCOCOUJgz00jGhCQhrhdB8NMU5pGFEcD9CRc28YY0ZifIgGkGCe8pgM0WRi6lba0pkmMEUwm4fdUtvaLKxsl-tANnnQVrJpymYRKFmpVSW70jQuKJugXcqmM7U7RgeFrJw-6e8Ivd7dvkwewunT_ePkZhoqShmETOtMsSyJ0gziLOdca5UlQGOeqkgnMXDmMcL8sgxkHgOkfifLiAYoSM7ICJ1vvK017yvtOlGXTunK79Nm5QTjQCJOqQcvNqCyxjmrC9HaspZ2LQCL72ICRF_Ms2e9dJXVOt-SfSIPhBvgs6z0erdJzJ574fWGd6rsfmLt_tnGF6YQs7nw8b3g8t-Cv-APY3-ta_OCfAGGtaP-</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Gellermann, J.</creator><creator>Weihrauch, M.</creator><creator>Cho, C. H.</creator><creator>Wlodarczyk, W.</creator><creator>Fähling, H.</creator><creator>Felix, R.</creator><creator>Budach, V.</creator><creator>Weiser, M.</creator><creator>Nadobny, J.</creator><creator>Wust, P.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Comparison of MR-thermography and planning calculations in phantoms</title><author>Gellermann, J. ; Weihrauch, M. ; Cho, C. H. ; Wlodarczyk, W. ; Fähling, H. ; Felix, R. ; Budach, V. ; Weiser, M. ; Nadobny, J. ; Wust, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>annular-phased array</topic><topic>Antennas</topic><topic>biomedical MRI</topic><topic>Biothermics and thermal processes in biology</topic><topic>Clinical applications</topic><topic>Computer Simulation</topic><topic>Computer software</topic><topic>Finite difference time domain calculations</topic><topic>finite difference time‐domain analysis</topic><topic>Finite‐difference methods</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>hyperthermia</topic><topic>hyperthermia planning</topic><topic>image segmentation</topic><topic>Imaging, Three-Dimensional</topic><topic>infrared imaging</topic><topic>interpolation</topic><topic>Interpolation; curve fitting</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>magnetic resonance thermography</topic><topic>Magnetoresistance</topic><topic>Models, Statistical</topic><topic>Numerical modeling</topic><topic>phantom</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Standard Model</topic><topic>Temperature</topic><topic>Therapeutic applications</topic><topic>Thermography</topic><topic>Thermography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gellermann, J.</creatorcontrib><creatorcontrib>Weihrauch, M.</creatorcontrib><creatorcontrib>Cho, C. H.</creatorcontrib><creatorcontrib>Wlodarczyk, W.</creatorcontrib><creatorcontrib>Fähling, H.</creatorcontrib><creatorcontrib>Felix, R.</creatorcontrib><creatorcontrib>Budach, V.</creatorcontrib><creatorcontrib>Weiser, M.</creatorcontrib><creatorcontrib>Nadobny, J.</creatorcontrib><creatorcontrib>Wust, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gellermann, J.</au><au>Weihrauch, M.</au><au>Cho, C. H.</au><au>Wlodarczyk, W.</au><au>Fähling, H.</au><au>Felix, R.</au><au>Budach, V.</au><au>Weiser, M.</au><au>Nadobny, J.</au><au>Wust, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of MR-thermography and planning calculations in phantoms</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2006-10</date><risdate>2006</risdate><volume>33</volume><issue>10</issue><spage>3912</spage><epage>3920</epage><pages>3912-3920</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed
2
×
6
experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony,
1.5
Tesla
). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of
0.5
cm
size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2–
3
W
∕
kg
, i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30–
40
°
and HT amplitude corrections of
±
20
–
30
%
are required for the best agreement. The deviation
∣
MR-FDTD
∣
, and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>17089853</pmid><doi>10.1118/1.2348761</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2006-10, Vol.33 (10), p.3912-3920 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_68132844 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms annular-phased array Antennas biomedical MRI Biothermics and thermal processes in biology Clinical applications Computer Simulation Computer software Finite difference time domain calculations finite difference time‐domain analysis Finite‐difference methods Hot Temperature Humans hyperthermia hyperthermia planning image segmentation Imaging, Three-Dimensional infrared imaging interpolation Interpolation curve fitting Magnetic resonance Magnetic Resonance Imaging - methods magnetic resonance thermography Magnetoresistance Models, Statistical Numerical modeling phantom phantoms Phantoms, Imaging Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted Silicon Silicon - chemistry Standard Model Temperature Therapeutic applications Thermography Thermography - methods |
title | Comparison of MR-thermography and planning calculations in phantoms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20MR-thermography%20and%20planning%20calculations%20in%20phantoms&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Gellermann,%20J.&rft.date=2006-10&rft.volume=33&rft.issue=10&rft.spage=3912&rft.epage=3920&rft.pages=3912-3920&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2348761&rft_dat=%3Cproquest_pubme%3E68132844%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68132844&rft_id=info:pmid/17089853&rfr_iscdi=true |