Comparison of MR-thermography and planning calculations in phantoms

A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed 2 × 6 experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different pattern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2006-10, Vol.33 (10), p.3912-3920
Hauptverfasser: Gellermann, J., Weihrauch, M., Cho, C. H., Wlodarczyk, W., Fähling, H., Felix, R., Budach, V., Weiser, M., Nadobny, J., Wust, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3920
container_issue 10
container_start_page 3912
container_title Medical physics (Lancaster)
container_volume 33
creator Gellermann, J.
Weihrauch, M.
Cho, C. H.
Wlodarczyk, W.
Fähling, H.
Felix, R.
Budach, V.
Weiser, M.
Nadobny, J.
Wust, P.
description A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed 2 × 6 experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony, 1.5 Tesla ). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of 0.5 cm size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2– 3 W ∕ kg , i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30– 40 ° and HT amplitude corrections of ± 20 – 30 % are required for the best agreement. The deviation ∣ MR-FDTD ∣ , and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters.
doi_str_mv 10.1118/1.2348761
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68132844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68132844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4Mobk4PfgHpSVDozNukaXoRZPgPNpSh55Cm6VZpm5p0yr690RXmZeLpvTzvw48HoVPAYwDgVzCOCOUJgz00jGhCQhrhdB8NMU5pGFEcD9CRc28YY0ZifIgGkGCe8pgM0WRi6lba0pkmMEUwm4fdUtvaLKxsl-tANnnQVrJpymYRKFmpVSW70jQuKJugXcqmM7U7RgeFrJw-6e8Ivd7dvkwewunT_ePkZhoqShmETOtMsSyJ0gziLOdca5UlQGOeqkgnMXDmMcL8sgxkHgOkfifLiAYoSM7ICJ1vvK017yvtOlGXTunK79Nm5QTjQCJOqQcvNqCyxjmrC9HaspZ2LQCL72ICRF_Ms2e9dJXVOt-SfSIPhBvgs6z0erdJzJ574fWGd6rsfmLt_tnGF6YQs7nw8b3g8t-Cv-APY3-ta_OCfAGGtaP-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68132844</pqid></control><display><type>article</type><title>Comparison of MR-thermography and planning calculations in phantoms</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gellermann, J. ; Weihrauch, M. ; Cho, C. H. ; Wlodarczyk, W. ; Fähling, H. ; Felix, R. ; Budach, V. ; Weiser, M. ; Nadobny, J. ; Wust, P.</creator><creatorcontrib>Gellermann, J. ; Weihrauch, M. ; Cho, C. H. ; Wlodarczyk, W. ; Fähling, H. ; Felix, R. ; Budach, V. ; Weiser, M. ; Nadobny, J. ; Wust, P.</creatorcontrib><description>A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed 2 × 6 experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony, 1.5 Tesla ). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of 0.5 cm size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2– 3 W ∕ kg , i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30– 40 ° and HT amplitude corrections of ± 20 – 30 % are required for the best agreement. The deviation ∣ MR-FDTD ∣ , and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.2348761</identifier><identifier>PMID: 17089853</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Algorithms ; annular-phased array ; Antennas ; biomedical MRI ; Biothermics and thermal processes in biology ; Clinical applications ; Computer Simulation ; Computer software ; Finite difference time domain calculations ; finite difference time‐domain analysis ; Finite‐difference methods ; Hot Temperature ; Humans ; hyperthermia ; hyperthermia planning ; image segmentation ; Imaging, Three-Dimensional ; infrared imaging ; interpolation ; Interpolation; curve fitting ; Magnetic resonance ; Magnetic Resonance Imaging - methods ; magnetic resonance thermography ; Magnetoresistance ; Models, Statistical ; Numerical modeling ; phantom ; phantoms ; Phantoms, Imaging ; Radiotherapy Dosage ; Radiotherapy Planning, Computer-Assisted ; Silicon ; Silicon - chemistry ; Standard Model ; Temperature ; Therapeutic applications ; Thermography ; Thermography - methods</subject><ispartof>Medical physics (Lancaster), 2006-10, Vol.33 (10), p.3912-3920</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2006 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</citedby><cites>FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.2348761$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.2348761$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17089853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gellermann, J.</creatorcontrib><creatorcontrib>Weihrauch, M.</creatorcontrib><creatorcontrib>Cho, C. H.</creatorcontrib><creatorcontrib>Wlodarczyk, W.</creatorcontrib><creatorcontrib>Fähling, H.</creatorcontrib><creatorcontrib>Felix, R.</creatorcontrib><creatorcontrib>Budach, V.</creatorcontrib><creatorcontrib>Weiser, M.</creatorcontrib><creatorcontrib>Nadobny, J.</creatorcontrib><creatorcontrib>Wust, P.</creatorcontrib><title>Comparison of MR-thermography and planning calculations in phantoms</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed 2 × 6 experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony, 1.5 Tesla ). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of 0.5 cm size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2– 3 W ∕ kg , i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30– 40 ° and HT amplitude corrections of ± 20 – 30 % are required for the best agreement. The deviation ∣ MR-FDTD ∣ , and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters.</description><subject>Algorithms</subject><subject>annular-phased array</subject><subject>Antennas</subject><subject>biomedical MRI</subject><subject>Biothermics and thermal processes in biology</subject><subject>Clinical applications</subject><subject>Computer Simulation</subject><subject>Computer software</subject><subject>Finite difference time domain calculations</subject><subject>finite difference time‐domain analysis</subject><subject>Finite‐difference methods</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>hyperthermia</subject><subject>hyperthermia planning</subject><subject>image segmentation</subject><subject>Imaging, Three-Dimensional</subject><subject>infrared imaging</subject><subject>interpolation</subject><subject>Interpolation; curve fitting</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>magnetic resonance thermography</subject><subject>Magnetoresistance</subject><subject>Models, Statistical</subject><subject>Numerical modeling</subject><subject>phantom</subject><subject>phantoms</subject><subject>Phantoms, Imaging</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy Planning, Computer-Assisted</subject><subject>Silicon</subject><subject>Silicon - chemistry</subject><subject>Standard Model</subject><subject>Temperature</subject><subject>Therapeutic applications</subject><subject>Thermography</subject><subject>Thermography - methods</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE9LwzAYh4Mobk4PfgHpSVDozNukaXoRZPgPNpSh55Cm6VZpm5p0yr690RXmZeLpvTzvw48HoVPAYwDgVzCOCOUJgz00jGhCQhrhdB8NMU5pGFEcD9CRc28YY0ZifIgGkGCe8pgM0WRi6lba0pkmMEUwm4fdUtvaLKxsl-tANnnQVrJpymYRKFmpVSW70jQuKJugXcqmM7U7RgeFrJw-6e8Ivd7dvkwewunT_ePkZhoqShmETOtMsSyJ0gziLOdca5UlQGOeqkgnMXDmMcL8sgxkHgOkfifLiAYoSM7ICJ1vvK017yvtOlGXTunK79Nm5QTjQCJOqQcvNqCyxjmrC9HaspZ2LQCL72ICRF_Ms2e9dJXVOt-SfSIPhBvgs6z0erdJzJ574fWGd6rsfmLt_tnGF6YQs7nw8b3g8t-Cv-APY3-ta_OCfAGGtaP-</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Gellermann, J.</creator><creator>Weihrauch, M.</creator><creator>Cho, C. H.</creator><creator>Wlodarczyk, W.</creator><creator>Fähling, H.</creator><creator>Felix, R.</creator><creator>Budach, V.</creator><creator>Weiser, M.</creator><creator>Nadobny, J.</creator><creator>Wust, P.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200610</creationdate><title>Comparison of MR-thermography and planning calculations in phantoms</title><author>Gellermann, J. ; Weihrauch, M. ; Cho, C. H. ; Wlodarczyk, W. ; Fähling, H. ; Felix, R. ; Budach, V. ; Weiser, M. ; Nadobny, J. ; Wust, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4461-6eebc6b729b15bd88eecb714589c2e7518646136898b1ad51191706b3e11f3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>annular-phased array</topic><topic>Antennas</topic><topic>biomedical MRI</topic><topic>Biothermics and thermal processes in biology</topic><topic>Clinical applications</topic><topic>Computer Simulation</topic><topic>Computer software</topic><topic>Finite difference time domain calculations</topic><topic>finite difference time‐domain analysis</topic><topic>Finite‐difference methods</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>hyperthermia</topic><topic>hyperthermia planning</topic><topic>image segmentation</topic><topic>Imaging, Three-Dimensional</topic><topic>infrared imaging</topic><topic>interpolation</topic><topic>Interpolation; curve fitting</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>magnetic resonance thermography</topic><topic>Magnetoresistance</topic><topic>Models, Statistical</topic><topic>Numerical modeling</topic><topic>phantom</topic><topic>phantoms</topic><topic>Phantoms, Imaging</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy Planning, Computer-Assisted</topic><topic>Silicon</topic><topic>Silicon - chemistry</topic><topic>Standard Model</topic><topic>Temperature</topic><topic>Therapeutic applications</topic><topic>Thermography</topic><topic>Thermography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gellermann, J.</creatorcontrib><creatorcontrib>Weihrauch, M.</creatorcontrib><creatorcontrib>Cho, C. H.</creatorcontrib><creatorcontrib>Wlodarczyk, W.</creatorcontrib><creatorcontrib>Fähling, H.</creatorcontrib><creatorcontrib>Felix, R.</creatorcontrib><creatorcontrib>Budach, V.</creatorcontrib><creatorcontrib>Weiser, M.</creatorcontrib><creatorcontrib>Nadobny, J.</creatorcontrib><creatorcontrib>Wust, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gellermann, J.</au><au>Weihrauch, M.</au><au>Cho, C. H.</au><au>Wlodarczyk, W.</au><au>Fähling, H.</au><au>Felix, R.</au><au>Budach, V.</au><au>Weiser, M.</au><au>Nadobny, J.</au><au>Wust, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of MR-thermography and planning calculations in phantoms</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2006-10</date><risdate>2006</risdate><volume>33</volume><issue>10</issue><spage>3912</spage><epage>3920</epage><pages>3912-3920</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>A systematic comparison of three-dimensional MR (magnetic resonance) thermography and planning calculations in phantoms for the hyperthermia (HT) SIGMA-Eye applicator. We performed 2 × 6 experiments in a homogeneous cylindrical and a heterogeneous elliptical phantom by adjusting 82 different patterns with different phase control inside an MR tomograph (Siemens Magnetom Symphony, 1.5 Tesla ). For MR thermography, we employed the proton resonance frequency shift method with a drift correction based on silicon tubes. For the planning calculations, we used the finite-difference time-domain (FDTD) method and, in addition, modeled the antennas and the transforming network. We generated regions according to a segmentation of bones and tissue, and used an interpolation technique with a subgrid of 0.5 cm size at the interfaces. A Gauss-Newton solver has been developed to adapt phases and amplitudes. A qualitative agreement between the planning program and measurements was obtained, including a correct prediction of hot spot locations. The final deviation between planning and measurement is in the range of 2– 3 W ∕ kg , i.e., below 10%. Additional HT phase and amplitude adaptation, as well as position correction of the phantom in the SIGMA-Eye, further improve the results. HT phase corrections in the range of 30– 40 ° and HT amplitude corrections of ± 20 – 30 % are required for the best agreement. The deviation ∣ MR-FDTD ∣ , and the HT phase/amplitude corrections depend on the type of phantom, certain channel groups, pattern steering, and the positioning error. Appropriate agreement between three-dimensional specific absorption rate distributions measured by MR-thermography and planning calculations is achieved, if the correct position and adapted feed point parameters are considered. As long as feed-point parameters are uncertain (i.e., cannot be directly measured during therapy), a prospective planning will remain difficult. However, we can use the information of MR thermography to better predict the patterns in the future even without the knowledge of feed-point parameters.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>17089853</pmid><doi>10.1118/1.2348761</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2006-10, Vol.33 (10), p.3912-3920
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_68132844
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
annular-phased array
Antennas
biomedical MRI
Biothermics and thermal processes in biology
Clinical applications
Computer Simulation
Computer software
Finite difference time domain calculations
finite difference time‐domain analysis
Finite‐difference methods
Hot Temperature
Humans
hyperthermia
hyperthermia planning
image segmentation
Imaging, Three-Dimensional
infrared imaging
interpolation
Interpolation
curve fitting
Magnetic resonance
Magnetic Resonance Imaging - methods
magnetic resonance thermography
Magnetoresistance
Models, Statistical
Numerical modeling
phantom
phantoms
Phantoms, Imaging
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Silicon
Silicon - chemistry
Standard Model
Temperature
Therapeutic applications
Thermography
Thermography - methods
title Comparison of MR-thermography and planning calculations in phantoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20MR-thermography%20and%20planning%20calculations%20in%20phantoms&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Gellermann,%20J.&rft.date=2006-10&rft.volume=33&rft.issue=10&rft.spage=3912&rft.epage=3920&rft.pages=3912-3920&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.2348761&rft_dat=%3Cproquest_pubme%3E68132844%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68132844&rft_id=info:pmid/17089853&rfr_iscdi=true