Choreographic solution to the general-relativistic three-body problem
We reexamine the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particle moves periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2007-05, Vol.98 (20), p.201102-201102, Article 201102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201102 |
---|---|
container_issue | 20 |
container_start_page | 201102 |
container_title | Physical review letters |
container_volume | 98 |
creator | Imai, Tatsunori Chiba, Takamasa Asada, Hideki |
description | We reexamine the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particle moves periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body system, which was found first by Moore (1993) and rediscovered with its existence proof by Chenciner and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from orbiting in a single closed curve. Therefore, it is unclear whether general-relativistic effects admit choreography such as the figure eight. We examine general-relativistic corrections to initial conditions so that an orbit for a three-body system can be choreographic and a figure eight. This illustration suggests that the general-relativistic N-body problem also may admit a certain class of choreographic solutions. |
doi_str_mv | 10.1103/PhysRevLett.98.201102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68131186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68131186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-29f3b1a26c9fe63e416d17a02a5a3035c7e057d5e061c1a86fe65c6b288bbb7d3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobk5_gtIr7zrPadYkvZThFwwU0euQpqdrpV1mkg72761soFcHDs_7vvAwdo0wRwR-99bswzvtVhTjvFDzDMZvdsKmCLJIJeLilE0BOKYFgJywixC-AAAzoc7ZBKWQUqh8yh6WjfPk1t5sm9YmwXVDbN0miS6JDSVr2pA3XeqpM7HdtSGOUGw8UVq6ap9svSs76i_ZWW26QFfHO2Ofjw8fy-d09fr0srxfpZaDjGlW1LxEkwlb1CQ4LVBUKA1kJjcceG4lQS6rnECgRaPESOVWlJlSZVnKis_Y7aF33P0eKETdt8FS15kNuSFooZAjKjGC-QG03oXgqdZb3_bG7zWC_vWn__nThdIHf2Pu5jgwlD1Vf6mjMP4Ds5Vv7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68131186</pqid></control><display><type>article</type><title>Choreographic solution to the general-relativistic three-body problem</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Imai, Tatsunori ; Chiba, Takamasa ; Asada, Hideki</creator><creatorcontrib>Imai, Tatsunori ; Chiba, Takamasa ; Asada, Hideki</creatorcontrib><description>We reexamine the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particle moves periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body system, which was found first by Moore (1993) and rediscovered with its existence proof by Chenciner and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from orbiting in a single closed curve. Therefore, it is unclear whether general-relativistic effects admit choreography such as the figure eight. We examine general-relativistic corrections to initial conditions so that an orbit for a three-body system can be choreographic and a figure eight. This illustration suggests that the general-relativistic N-body problem also may admit a certain class of choreographic solutions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.98.201102</identifier><identifier>PMID: 17677685</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2007-05, Vol.98 (20), p.201102-201102, Article 201102</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-29f3b1a26c9fe63e416d17a02a5a3035c7e057d5e061c1a86fe65c6b288bbb7d3</citedby><cites>FETCH-LOGICAL-c307t-29f3b1a26c9fe63e416d17a02a5a3035c7e057d5e061c1a86fe65c6b288bbb7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2877,2878,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17677685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imai, Tatsunori</creatorcontrib><creatorcontrib>Chiba, Takamasa</creatorcontrib><creatorcontrib>Asada, Hideki</creatorcontrib><title>Choreographic solution to the general-relativistic three-body problem</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We reexamine the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particle moves periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body system, which was found first by Moore (1993) and rediscovered with its existence proof by Chenciner and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from orbiting in a single closed curve. Therefore, it is unclear whether general-relativistic effects admit choreography such as the figure eight. We examine general-relativistic corrections to initial conditions so that an orbit for a three-body system can be choreographic and a figure eight. This illustration suggests that the general-relativistic N-body problem also may admit a certain class of choreographic solutions.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMobk5_gtIr7zrPadYkvZThFwwU0euQpqdrpV1mkg72761soFcHDs_7vvAwdo0wRwR-99bswzvtVhTjvFDzDMZvdsKmCLJIJeLilE0BOKYFgJywixC-AAAzoc7ZBKWQUqh8yh6WjfPk1t5sm9YmwXVDbN0miS6JDSVr2pA3XeqpM7HdtSGOUGw8UVq6ap9svSs76i_ZWW26QFfHO2Ofjw8fy-d09fr0srxfpZaDjGlW1LxEkwlb1CQ4LVBUKA1kJjcceG4lQS6rnECgRaPESOVWlJlSZVnKis_Y7aF33P0eKETdt8FS15kNuSFooZAjKjGC-QG03oXgqdZb3_bG7zWC_vWn__nThdIHf2Pu5jgwlD1Vf6mjMP4Ds5Vv7A</recordid><startdate>20070518</startdate><enddate>20070518</enddate><creator>Imai, Tatsunori</creator><creator>Chiba, Takamasa</creator><creator>Asada, Hideki</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070518</creationdate><title>Choreographic solution to the general-relativistic three-body problem</title><author>Imai, Tatsunori ; Chiba, Takamasa ; Asada, Hideki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-29f3b1a26c9fe63e416d17a02a5a3035c7e057d5e061c1a86fe65c6b288bbb7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imai, Tatsunori</creatorcontrib><creatorcontrib>Chiba, Takamasa</creatorcontrib><creatorcontrib>Asada, Hideki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imai, Tatsunori</au><au>Chiba, Takamasa</au><au>Asada, Hideki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Choreographic solution to the general-relativistic three-body problem</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2007-05-18</date><risdate>2007</risdate><volume>98</volume><issue>20</issue><spage>201102</spage><epage>201102</epage><pages>201102-201102</pages><artnum>201102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We reexamine the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particle moves periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body system, which was found first by Moore (1993) and rediscovered with its existence proof by Chenciner and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from orbiting in a single closed curve. Therefore, it is unclear whether general-relativistic effects admit choreography such as the figure eight. We examine general-relativistic corrections to initial conditions so that an orbit for a three-body system can be choreographic and a figure eight. This illustration suggests that the general-relativistic N-body problem also may admit a certain class of choreographic solutions.</abstract><cop>United States</cop><pmid>17677685</pmid><doi>10.1103/PhysRevLett.98.201102</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2007-05, Vol.98 (20), p.201102-201102, Article 201102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_68131186 |
source | APS: American Physical Society E-Journals (Physics) |
title | Choreographic solution to the general-relativistic three-body problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Choreographic%20solution%20to%20the%20general-relativistic%20three-body%20problem&rft.jtitle=Physical%20review%20letters&rft.au=Imai,%20Tatsunori&rft.date=2007-05-18&rft.volume=98&rft.issue=20&rft.spage=201102&rft.epage=201102&rft.pages=201102-201102&rft.artnum=201102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.98.201102&rft_dat=%3Cproquest_cross%3E68131186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68131186&rft_id=info:pmid/17677685&rfr_iscdi=true |