Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes

To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American Journal of Physiology: Cell Physiology 2007-08, Vol.293 (2), p.C542-C557
Hauptverfasser: Michailova, Anushka, Lorentz, William, McCulloch, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page C557
container_issue 2
container_start_page C542
container_title American Journal of Physiology: Cell Physiology
container_volume 293
creator Michailova, Anushka
Lorentz, William
McCulloch, Andrew
description To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68124440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68124440</sourcerecordid><originalsourceid>FETCH-LOGICAL-p544-46e355e2d7d61dcb1a8f655a379bccdfeb0f39ad011576cbf2f302ca55ee05733</originalsourceid><addsrcrecordid>eNo1kEtLAzEYRbNQbK3-BclKdDGQTB7TWZaiVqwoMvshjy81knmYZIT59xasq8uFc-7inqElYZIVknK2QJcpfRFCeCnrC7SgFStrTvgSfbwOFoLvDzhH1aduiirgT8gQhwP04POMB4df7jbN-z02U4zQZ-x7HJXWPuOfY43eTEFF3M2DmTOkK3TuVEhwfcoVah4fmu2u2L89PW83-2IUnBdcAhMCSltZSa3RVK2dFEKxqtbGWAeaOFYrSygVlTTalY6R0qijA0RUjK3Q7d_sGIfvCVJuO58MhKB6GKbUyjUtOefkCN6cwEl3YNsx-k7Fuf0_gf0CpiBYog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68124440</pqid></control><display><type>article</type><title>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Michailova, Anushka ; Lorentz, William ; McCulloch, Andrew</creator><creatorcontrib>Michailova, Anushka ; Lorentz, William ; McCulloch, Andrew</creatorcontrib><description>To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.</description><identifier>ISSN: 0363-6143</identifier><identifier>PMID: 17329404</identifier><language>eng</language><publisher>United States</publisher><subject>Action Potentials ; Adenosine Diphosphate - metabolism ; Adenosine Monophosphate - metabolism ; Adenosine Triphosphate - metabolism ; Animals ; ATP-Binding Cassette Transporters - metabolism ; Calcium - metabolism ; Calcium Channels, L-Type - metabolism ; Computer Simulation ; Creatine - metabolism ; Endocardium - metabolism ; Heart Ventricles - metabolism ; Hydrogen-Ion Concentration ; Ion Channel Gating ; Magnesium - metabolism ; Models, Cardiovascular ; Myocardial Ischemia - metabolism ; Myocardial Ischemia - physiopathology ; Myocytes, Cardiac - enzymology ; Myocytes, Cardiac - metabolism ; Pericardium - metabolism ; Phosphocreatine - metabolism ; Potassium - metabolism ; Potassium Channels - metabolism ; Potassium Channels, Inwardly Rectifying - metabolism ; Rabbits ; Receptors, Drug - metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism ; Signal Transduction ; Sodium-Potassium-Exchanging ATPase - metabolism ; Sulfonylurea Receptors</subject><ispartof>American Journal of Physiology: Cell Physiology, 2007-08, Vol.293 (2), p.C542-C557</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17329404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michailova, Anushka</creatorcontrib><creatorcontrib>Lorentz, William</creatorcontrib><creatorcontrib>McCulloch, Andrew</creatorcontrib><title>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.</description><subject>Action Potentials</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Computer Simulation</subject><subject>Creatine - metabolism</subject><subject>Endocardium - metabolism</subject><subject>Heart Ventricles - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Channel Gating</subject><subject>Magnesium - metabolism</subject><subject>Models, Cardiovascular</subject><subject>Myocardial Ischemia - metabolism</subject><subject>Myocardial Ischemia - physiopathology</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Pericardium - metabolism</subject><subject>Phosphocreatine - metabolism</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Rabbits</subject><subject>Receptors, Drug - metabolism</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</subject><subject>Signal Transduction</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Sulfonylurea Receptors</subject><issn>0363-6143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kEtLAzEYRbNQbK3-BclKdDGQTB7TWZaiVqwoMvshjy81knmYZIT59xasq8uFc-7inqElYZIVknK2QJcpfRFCeCnrC7SgFStrTvgSfbwOFoLvDzhH1aduiirgT8gQhwP04POMB4df7jbN-z02U4zQZ-x7HJXWPuOfY43eTEFF3M2DmTOkK3TuVEhwfcoVah4fmu2u2L89PW83-2IUnBdcAhMCSltZSa3RVK2dFEKxqtbGWAeaOFYrSygVlTTalY6R0qijA0RUjK3Q7d_sGIfvCVJuO58MhKB6GKbUyjUtOefkCN6cwEl3YNsx-k7Fuf0_gf0CpiBYog</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Michailova, Anushka</creator><creator>Lorentz, William</creator><creator>McCulloch, Andrew</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200708</creationdate><title>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</title><author>Michailova, Anushka ; Lorentz, William ; McCulloch, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p544-46e355e2d7d61dcb1a8f655a379bccdfeb0f39ad011576cbf2f302ca55ee05733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Computer Simulation</topic><topic>Creatine - metabolism</topic><topic>Endocardium - metabolism</topic><topic>Heart Ventricles - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Channel Gating</topic><topic>Magnesium - metabolism</topic><topic>Models, Cardiovascular</topic><topic>Myocardial Ischemia - metabolism</topic><topic>Myocardial Ischemia - physiopathology</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Pericardium - metabolism</topic><topic>Phosphocreatine - metabolism</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Rabbits</topic><topic>Receptors, Drug - metabolism</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</topic><topic>Signal Transduction</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Sulfonylurea Receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michailova, Anushka</creatorcontrib><creatorcontrib>Lorentz, William</creatorcontrib><creatorcontrib>McCulloch, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michailova, Anushka</au><au>Lorentz, William</au><au>McCulloch, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2007-08</date><risdate>2007</risdate><volume>293</volume><issue>2</issue><spage>C542</spage><epage>C557</epage><pages>C542-C557</pages><issn>0363-6143</issn><abstract>To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.</abstract><cop>United States</cop><pmid>17329404</pmid></addata></record>
fulltext fulltext
identifier ISSN: 0363-6143
ispartof American Journal of Physiology: Cell Physiology, 2007-08, Vol.293 (2), p.C542-C557
issn 0363-6143
language eng
recordid cdi_proquest_miscellaneous_68124440
source MEDLINE; American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals
subjects Action Potentials
Adenosine Diphosphate - metabolism
Adenosine Monophosphate - metabolism
Adenosine Triphosphate - metabolism
Animals
ATP-Binding Cassette Transporters - metabolism
Calcium - metabolism
Calcium Channels, L-Type - metabolism
Computer Simulation
Creatine - metabolism
Endocardium - metabolism
Heart Ventricles - metabolism
Hydrogen-Ion Concentration
Ion Channel Gating
Magnesium - metabolism
Models, Cardiovascular
Myocardial Ischemia - metabolism
Myocardial Ischemia - physiopathology
Myocytes, Cardiac - enzymology
Myocytes, Cardiac - metabolism
Pericardium - metabolism
Phosphocreatine - metabolism
Potassium - metabolism
Potassium Channels - metabolism
Potassium Channels, Inwardly Rectifying - metabolism
Rabbits
Receptors, Drug - metabolism
Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism
Signal Transduction
Sodium-Potassium-Exchanging ATPase - metabolism
Sulfonylurea Receptors
title Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20transmural%20heterogeneity%20of%20K(ATP)%20current%20in%20rabbit%20ventricular%20myocytes&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Michailova,%20Anushka&rft.date=2007-08&rft.volume=293&rft.issue=2&rft.spage=C542&rft.epage=C557&rft.pages=C542-C557&rft.issn=0363-6143&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E68124440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68124440&rft_id=info:pmid/17329404&rfr_iscdi=true