Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+)...
Gespeichert in:
Veröffentlicht in: | American Journal of Physiology: Cell Physiology 2007-08, Vol.293 (2), p.C542-C557 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | C557 |
---|---|
container_issue | 2 |
container_start_page | C542 |
container_title | American Journal of Physiology: Cell Physiology |
container_volume | 293 |
creator | Michailova, Anushka Lorentz, William McCulloch, Andrew |
description | To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68124440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68124440</sourcerecordid><originalsourceid>FETCH-LOGICAL-p544-46e355e2d7d61dcb1a8f655a379bccdfeb0f39ad011576cbf2f302ca55ee05733</originalsourceid><addsrcrecordid>eNo1kEtLAzEYRbNQbK3-BclKdDGQTB7TWZaiVqwoMvshjy81knmYZIT59xasq8uFc-7inqElYZIVknK2QJcpfRFCeCnrC7SgFStrTvgSfbwOFoLvDzhH1aduiirgT8gQhwP04POMB4df7jbN-z02U4zQZ-x7HJXWPuOfY43eTEFF3M2DmTOkK3TuVEhwfcoVah4fmu2u2L89PW83-2IUnBdcAhMCSltZSa3RVK2dFEKxqtbGWAeaOFYrSygVlTTalY6R0qijA0RUjK3Q7d_sGIfvCVJuO58MhKB6GKbUyjUtOefkCN6cwEl3YNsx-k7Fuf0_gf0CpiBYog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68124440</pqid></control><display><type>article</type><title>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</title><source>MEDLINE</source><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Michailova, Anushka ; Lorentz, William ; McCulloch, Andrew</creator><creatorcontrib>Michailova, Anushka ; Lorentz, William ; McCulloch, Andrew</creatorcontrib><description>To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.</description><identifier>ISSN: 0363-6143</identifier><identifier>PMID: 17329404</identifier><language>eng</language><publisher>United States</publisher><subject>Action Potentials ; Adenosine Diphosphate - metabolism ; Adenosine Monophosphate - metabolism ; Adenosine Triphosphate - metabolism ; Animals ; ATP-Binding Cassette Transporters - metabolism ; Calcium - metabolism ; Calcium Channels, L-Type - metabolism ; Computer Simulation ; Creatine - metabolism ; Endocardium - metabolism ; Heart Ventricles - metabolism ; Hydrogen-Ion Concentration ; Ion Channel Gating ; Magnesium - metabolism ; Models, Cardiovascular ; Myocardial Ischemia - metabolism ; Myocardial Ischemia - physiopathology ; Myocytes, Cardiac - enzymology ; Myocytes, Cardiac - metabolism ; Pericardium - metabolism ; Phosphocreatine - metabolism ; Potassium - metabolism ; Potassium Channels - metabolism ; Potassium Channels, Inwardly Rectifying - metabolism ; Rabbits ; Receptors, Drug - metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism ; Signal Transduction ; Sodium-Potassium-Exchanging ATPase - metabolism ; Sulfonylurea Receptors</subject><ispartof>American Journal of Physiology: Cell Physiology, 2007-08, Vol.293 (2), p.C542-C557</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17329404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Michailova, Anushka</creatorcontrib><creatorcontrib>Lorentz, William</creatorcontrib><creatorcontrib>McCulloch, Andrew</creatorcontrib><title>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</title><title>American Journal of Physiology: Cell Physiology</title><addtitle>Am J Physiol Cell Physiol</addtitle><description>To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.</description><subject>Action Potentials</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Computer Simulation</subject><subject>Creatine - metabolism</subject><subject>Endocardium - metabolism</subject><subject>Heart Ventricles - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Channel Gating</subject><subject>Magnesium - metabolism</subject><subject>Models, Cardiovascular</subject><subject>Myocardial Ischemia - metabolism</subject><subject>Myocardial Ischemia - physiopathology</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Pericardium - metabolism</subject><subject>Phosphocreatine - metabolism</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels - metabolism</subject><subject>Potassium Channels, Inwardly Rectifying - metabolism</subject><subject>Rabbits</subject><subject>Receptors, Drug - metabolism</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</subject><subject>Signal Transduction</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><subject>Sulfonylurea Receptors</subject><issn>0363-6143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kEtLAzEYRbNQbK3-BclKdDGQTB7TWZaiVqwoMvshjy81knmYZIT59xasq8uFc-7inqElYZIVknK2QJcpfRFCeCnrC7SgFStrTvgSfbwOFoLvDzhH1aduiirgT8gQhwP04POMB4df7jbN-z02U4zQZ-x7HJXWPuOfY43eTEFF3M2DmTOkK3TuVEhwfcoVah4fmu2u2L89PW83-2IUnBdcAhMCSltZSa3RVK2dFEKxqtbGWAeaOFYrSygVlTTalY6R0qijA0RUjK3Q7d_sGIfvCVJuO58MhKB6GKbUyjUtOefkCN6cwEl3YNsx-k7Fuf0_gf0CpiBYog</recordid><startdate>200708</startdate><enddate>200708</enddate><creator>Michailova, Anushka</creator><creator>Lorentz, William</creator><creator>McCulloch, Andrew</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>200708</creationdate><title>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</title><author>Michailova, Anushka ; Lorentz, William ; McCulloch, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p544-46e355e2d7d61dcb1a8f655a379bccdfeb0f39ad011576cbf2f302ca55ee05733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Action Potentials</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Computer Simulation</topic><topic>Creatine - metabolism</topic><topic>Endocardium - metabolism</topic><topic>Heart Ventricles - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Channel Gating</topic><topic>Magnesium - metabolism</topic><topic>Models, Cardiovascular</topic><topic>Myocardial Ischemia - metabolism</topic><topic>Myocardial Ischemia - physiopathology</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Pericardium - metabolism</topic><topic>Phosphocreatine - metabolism</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels - metabolism</topic><topic>Potassium Channels, Inwardly Rectifying - metabolism</topic><topic>Rabbits</topic><topic>Receptors, Drug - metabolism</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</topic><topic>Signal Transduction</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><topic>Sulfonylurea Receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michailova, Anushka</creatorcontrib><creatorcontrib>Lorentz, William</creatorcontrib><creatorcontrib>McCulloch, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>American Journal of Physiology: Cell Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michailova, Anushka</au><au>Lorentz, William</au><au>McCulloch, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes</atitle><jtitle>American Journal of Physiology: Cell Physiology</jtitle><addtitle>Am J Physiol Cell Physiol</addtitle><date>2007-08</date><risdate>2007</risdate><volume>293</volume><issue>2</issue><spage>C542</spage><epage>C557</epage><pages>C542-C557</pages><issn>0363-6143</issn><abstract>To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049-C2060, 2001). We incorporated equations for Ca(2+) and Mg(2+) buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K(+) channel and L-type Ca(2+) channel, Na(+)-K(+)-ATPase, and sarcolemmal and sarcoplasmic Ca(2+)-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different I(Na), I(to), I(Kr), I(Ks), and I(Kp) channel properties. The results indicate that the ATP-sensitive K(+) channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, P(i), total Mg(2+), Na(+), K(+), Ca(2+), and pH diastolic levels are normal. The model predicts that only K(ATP) ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the K(ATP) channel opening through metabolic interactions with the endogenous PI cascade (PIP(2), PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes.</abstract><cop>United States</cop><pmid>17329404</pmid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6143 |
ispartof | American Journal of Physiology: Cell Physiology, 2007-08, Vol.293 (2), p.C542-C557 |
issn | 0363-6143 |
language | eng |
recordid | cdi_proquest_miscellaneous_68124440 |
source | MEDLINE; American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals |
subjects | Action Potentials Adenosine Diphosphate - metabolism Adenosine Monophosphate - metabolism Adenosine Triphosphate - metabolism Animals ATP-Binding Cassette Transporters - metabolism Calcium - metabolism Calcium Channels, L-Type - metabolism Computer Simulation Creatine - metabolism Endocardium - metabolism Heart Ventricles - metabolism Hydrogen-Ion Concentration Ion Channel Gating Magnesium - metabolism Models, Cardiovascular Myocardial Ischemia - metabolism Myocardial Ischemia - physiopathology Myocytes, Cardiac - enzymology Myocytes, Cardiac - metabolism Pericardium - metabolism Phosphocreatine - metabolism Potassium - metabolism Potassium Channels - metabolism Potassium Channels, Inwardly Rectifying - metabolism Rabbits Receptors, Drug - metabolism Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism Signal Transduction Sodium-Potassium-Exchanging ATPase - metabolism Sulfonylurea Receptors |
title | Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20transmural%20heterogeneity%20of%20K(ATP)%20current%20in%20rabbit%20ventricular%20myocytes&rft.jtitle=American%20Journal%20of%20Physiology:%20Cell%20Physiology&rft.au=Michailova,%20Anushka&rft.date=2007-08&rft.volume=293&rft.issue=2&rft.spage=C542&rft.epage=C557&rft.pages=C542-C557&rft.issn=0363-6143&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E68124440%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68124440&rft_id=info:pmid/17329404&rfr_iscdi=true |