A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production
Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1Δ mutant defective in triose phosphat...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2007-07, Vol.9 (4), p.364-378 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 4 |
container_start_page | 364 |
container_title | Metabolic engineering |
container_volume | 9 |
creator | Cordier, Hélène Mendes, Filipa Vasconcelos, Isabel François, Jean M. |
description | Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast
Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of
GPD1 was introduced in a
tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of
ADH1 and overexpression of
ALD3, encoding, respectively, the major NAD
+-dependent alcohol dehydrogenase and a cytosolic NAD
+-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46
g
glycerol (g
glucose)
−1 at a maximal rate of 3.1
mmol (g
dry
mass)
−1
h
−1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by
FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD
+/NADP
+ binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast. |
doi_str_mv | 10.1016/j.ymben.2007.03.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68115769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717607000171</els_id><sourcerecordid>20239756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</originalsourceid><addsrcrecordid>eNqFkU9L7DAUxYMo_v8EgmTlbmrStMl04ULkPRUEF-o6pDe3MxnaxJe0wnx7M87g2-nqHi6_cy-cQ8gFZwVnXF6vivXQoi9KxlTBRMFYuUeOOWvkTPF5tf-tlTwiJymtGOO8bvghOeKqZhnnx8Td0gFH04beATXe0gX6MGSdxsmuaego-oXziBEtfTEASxPDsAZMFPLuwyVnMMPROJ9oFyJdusWSLvqMxNDT9xjsBKML_owcdKZPeL6bp-Tt75_Xu4fZ0_P9493t0wyquhpn0FplWYe8hkpYqCpQJXJjmOAANaJpZK2w7ERrpUWwvDZyLoRVXYsllkackqvt3fz634Rp1INLgH1vPIYpaTnPKSjZ_AqWrBSNqmUGxRaEGFKK2On36AYT15ozvalCr_RXFXpThWZC52yz63J3fmoHtP89u-wzcLMFMKfx4TDqBA49oHURYdQ2uB8ffAKwgZ5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20239756</pqid></control><display><type>article</type><title>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cordier, Hélène ; Mendes, Filipa ; Vasconcelos, Isabel ; François, Jean M.</creator><creatorcontrib>Cordier, Hélène ; Mendes, Filipa ; Vasconcelos, Isabel ; François, Jean M.</creatorcontrib><description>Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast
Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of
GPD1 was introduced in a
tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of
ADH1 and overexpression of
ALD3, encoding, respectively, the major NAD
+-dependent alcohol dehydrogenase and a cytosolic NAD
+-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46
g
glycerol (g
glucose)
−1 at a maximal rate of 3.1
mmol (g
dry
mass)
−1
h
−1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by
FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD
+/NADP
+ binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2007.03.002</identifier><identifier>PMID: 17500021</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Gene Expression Regulation, Fungal ; Genetic engineering ; Glycerol - metabolism ; Metabolic Networks and Pathways ; Metabolic regulation ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcriptomic analysis</subject><ispartof>Metabolic engineering, 2007-07, Vol.9 (4), p.364-378</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</citedby><cites>FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2007.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17500021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cordier, Hélène</creatorcontrib><creatorcontrib>Mendes, Filipa</creatorcontrib><creatorcontrib>Vasconcelos, Isabel</creatorcontrib><creatorcontrib>François, Jean M.</creatorcontrib><title>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast
Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of
GPD1 was introduced in a
tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of
ADH1 and overexpression of
ALD3, encoding, respectively, the major NAD
+-dependent alcohol dehydrogenase and a cytosolic NAD
+-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46
g
glycerol (g
glucose)
−1 at a maximal rate of 3.1
mmol (g
dry
mass)
−1
h
−1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by
FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD
+/NADP
+ binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.</description><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic engineering</subject><subject>Glycerol - metabolism</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic regulation</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcriptomic analysis</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9L7DAUxYMo_v8EgmTlbmrStMl04ULkPRUEF-o6pDe3MxnaxJe0wnx7M87g2-nqHi6_cy-cQ8gFZwVnXF6vivXQoi9KxlTBRMFYuUeOOWvkTPF5tf-tlTwiJymtGOO8bvghOeKqZhnnx8Td0gFH04beATXe0gX6MGSdxsmuaego-oXziBEtfTEASxPDsAZMFPLuwyVnMMPROJ9oFyJdusWSLvqMxNDT9xjsBKML_owcdKZPeL6bp-Tt75_Xu4fZ0_P9493t0wyquhpn0FplWYe8hkpYqCpQJXJjmOAANaJpZK2w7ERrpUWwvDZyLoRVXYsllkackqvt3fz634Rp1INLgH1vPIYpaTnPKSjZ_AqWrBSNqmUGxRaEGFKK2On36AYT15ozvalCr_RXFXpThWZC52yz63J3fmoHtP89u-wzcLMFMKfx4TDqBA49oHURYdQ2uB8ffAKwgZ5F</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Cordier, Hélène</creator><creator>Mendes, Filipa</creator><creator>Vasconcelos, Isabel</creator><creator>François, Jean M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</title><author>Cordier, Hélène ; Mendes, Filipa ; Vasconcelos, Isabel ; François, Jean M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic engineering</topic><topic>Glycerol - metabolism</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic regulation</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcriptomic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cordier, Hélène</creatorcontrib><creatorcontrib>Mendes, Filipa</creatorcontrib><creatorcontrib>Vasconcelos, Isabel</creatorcontrib><creatorcontrib>François, Jean M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cordier, Hélène</au><au>Mendes, Filipa</au><au>Vasconcelos, Isabel</au><au>François, Jean M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>9</volume><issue>4</issue><spage>364</spage><epage>378</epage><pages>364-378</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast
Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of
GPD1 was introduced in a
tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of
ADH1 and overexpression of
ALD3, encoding, respectively, the major NAD
+-dependent alcohol dehydrogenase and a cytosolic NAD
+-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46
g
glycerol (g
glucose)
−1 at a maximal rate of 3.1
mmol (g
dry
mass)
−1
h
−1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by
FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD
+/NADP
+ binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>17500021</pmid><doi>10.1016/j.ymben.2007.03.002</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2007-07, Vol.9 (4), p.364-378 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_proquest_miscellaneous_68115769 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Gene Expression Regulation, Fungal Genetic engineering Glycerol - metabolism Metabolic Networks and Pathways Metabolic regulation Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Transcriptomic analysis |
title | A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20metabolic%20and%20genomic%20study%20of%20engineered%20Saccharomyces%20cerevisiae%20strains%20for%20high%20glycerol%20production&rft.jtitle=Metabolic%20engineering&rft.au=Cordier,%20H%C3%A9l%C3%A8ne&rft.date=2007-07-01&rft.volume=9&rft.issue=4&rft.spage=364&rft.epage=378&rft.pages=364-378&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2007.03.002&rft_dat=%3Cproquest_cross%3E20239756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20239756&rft_id=info:pmid/17500021&rft_els_id=S1096717607000171&rfr_iscdi=true |