A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production

Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1Δ mutant defective in triose phosphat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2007-07, Vol.9 (4), p.364-378
Hauptverfasser: Cordier, Hélène, Mendes, Filipa, Vasconcelos, Isabel, François, Jean M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 4
container_start_page 364
container_title Metabolic engineering
container_volume 9
creator Cordier, Hélène
Mendes, Filipa
Vasconcelos, Isabel
François, Jean M.
description Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of ADH1 and overexpression of ALD3, encoding, respectively, the major NAD +-dependent alcohol dehydrogenase and a cytosolic NAD +-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46 g glycerol (g glucose) −1 at a maximal rate of 3.1 mmol (g dry mass) −1 h −1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD +/NADP + binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.
doi_str_mv 10.1016/j.ymben.2007.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68115769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717607000171</els_id><sourcerecordid>20239756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</originalsourceid><addsrcrecordid>eNqFkU9L7DAUxYMo_v8EgmTlbmrStMl04ULkPRUEF-o6pDe3MxnaxJe0wnx7M87g2-nqHi6_cy-cQ8gFZwVnXF6vivXQoi9KxlTBRMFYuUeOOWvkTPF5tf-tlTwiJymtGOO8bvghOeKqZhnnx8Td0gFH04beATXe0gX6MGSdxsmuaego-oXziBEtfTEASxPDsAZMFPLuwyVnMMPROJ9oFyJdusWSLvqMxNDT9xjsBKML_owcdKZPeL6bp-Tt75_Xu4fZ0_P9493t0wyquhpn0FplWYe8hkpYqCpQJXJjmOAANaJpZK2w7ERrpUWwvDZyLoRVXYsllkackqvt3fz634Rp1INLgH1vPIYpaTnPKSjZ_AqWrBSNqmUGxRaEGFKK2On36AYT15ozvalCr_RXFXpThWZC52yz63J3fmoHtP89u-wzcLMFMKfx4TDqBA49oHURYdQ2uB8ffAKwgZ5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20239756</pqid></control><display><type>article</type><title>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Cordier, Hélène ; Mendes, Filipa ; Vasconcelos, Isabel ; François, Jean M.</creator><creatorcontrib>Cordier, Hélène ; Mendes, Filipa ; Vasconcelos, Isabel ; François, Jean M.</creatorcontrib><description>Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of ADH1 and overexpression of ALD3, encoding, respectively, the major NAD +-dependent alcohol dehydrogenase and a cytosolic NAD +-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46 g glycerol (g glucose) −1 at a maximal rate of 3.1 mmol (g dry mass) −1 h −1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD +/NADP + binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2007.03.002</identifier><identifier>PMID: 17500021</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Gene Expression Regulation, Fungal ; Genetic engineering ; Glycerol - metabolism ; Metabolic Networks and Pathways ; Metabolic regulation ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Transcriptomic analysis</subject><ispartof>Metabolic engineering, 2007-07, Vol.9 (4), p.364-378</ispartof><rights>2007 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</citedby><cites>FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymben.2007.03.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17500021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cordier, Hélène</creatorcontrib><creatorcontrib>Mendes, Filipa</creatorcontrib><creatorcontrib>Vasconcelos, Isabel</creatorcontrib><creatorcontrib>François, Jean M.</creatorcontrib><title>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of ADH1 and overexpression of ALD3, encoding, respectively, the major NAD +-dependent alcohol dehydrogenase and a cytosolic NAD +-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46 g glycerol (g glucose) −1 at a maximal rate of 3.1 mmol (g dry mass) −1 h −1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD +/NADP + binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.</description><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic engineering</subject><subject>Glycerol - metabolism</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic regulation</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Transcriptomic analysis</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9L7DAUxYMo_v8EgmTlbmrStMl04ULkPRUEF-o6pDe3MxnaxJe0wnx7M87g2-nqHi6_cy-cQ8gFZwVnXF6vivXQoi9KxlTBRMFYuUeOOWvkTPF5tf-tlTwiJymtGOO8bvghOeKqZhnnx8Td0gFH04beATXe0gX6MGSdxsmuaego-oXziBEtfTEASxPDsAZMFPLuwyVnMMPROJ9oFyJdusWSLvqMxNDT9xjsBKML_owcdKZPeL6bp-Tt75_Xu4fZ0_P9493t0wyquhpn0FplWYe8hkpYqCpQJXJjmOAANaJpZK2w7ERrpUWwvDZyLoRVXYsllkackqvt3fz634Rp1INLgH1vPIYpaTnPKSjZ_AqWrBSNqmUGxRaEGFKK2On36AYT15ozvalCr_RXFXpThWZC52yz63J3fmoHtP89u-wzcLMFMKfx4TDqBA49oHURYdQ2uB8ffAKwgZ5F</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Cordier, Hélène</creator><creator>Mendes, Filipa</creator><creator>Vasconcelos, Isabel</creator><creator>François, Jean M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</title><author>Cordier, Hélène ; Mendes, Filipa ; Vasconcelos, Isabel ; François, Jean M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-cbd7d0fe15c43dc44c72e1aa031cc5eea9657e2f3bd6decd15a6833d7fbe2e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic engineering</topic><topic>Glycerol - metabolism</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic regulation</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Transcriptomic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cordier, Hélène</creatorcontrib><creatorcontrib>Mendes, Filipa</creatorcontrib><creatorcontrib>Vasconcelos, Isabel</creatorcontrib><creatorcontrib>François, Jean M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cordier, Hélène</au><au>Mendes, Filipa</au><au>Vasconcelos, Isabel</au><au>François, Jean M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>9</volume><issue>4</issue><spage>364</spage><epage>378</epage><pages>364-378</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1Δ mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of ADH1 and overexpression of ALD3, encoding, respectively, the major NAD +-dependent alcohol dehydrogenase and a cytosolic NAD +-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46 g glycerol (g glucose) −1 at a maximal rate of 3.1 mmol (g dry mass) −1 h −1 in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD +/NADP + binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>17500021</pmid><doi>10.1016/j.ymben.2007.03.002</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2007-07, Vol.9 (4), p.364-378
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_68115769
source MEDLINE; Elsevier ScienceDirect Journals
subjects Gene Expression Regulation, Fungal
Genetic engineering
Glycerol - metabolism
Metabolic Networks and Pathways
Metabolic regulation
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Transcriptomic analysis
title A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20metabolic%20and%20genomic%20study%20of%20engineered%20Saccharomyces%20cerevisiae%20strains%20for%20high%20glycerol%20production&rft.jtitle=Metabolic%20engineering&rft.au=Cordier,%20H%C3%A9l%C3%A8ne&rft.date=2007-07-01&rft.volume=9&rft.issue=4&rft.spage=364&rft.epage=378&rft.pages=364-378&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2007.03.002&rft_dat=%3Cproquest_cross%3E20239756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20239756&rft_id=info:pmid/17500021&rft_els_id=S1096717607000171&rfr_iscdi=true