Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice

Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2006-12, Vol.23 (12), p.2505-2520
Hauptverfasser: Lee, Hye-Ran, Neumann, Pavel, Macas, Jiri, Jiang, Jiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2520
container_issue 12
container_start_page 2505
container_title Molecular biology and evolution
container_volume 23
creator Lee, Hye-Ran
Neumann, Pavel
Macas, Jiri
Jiang, Jiming
description Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification.
doi_str_mv 10.1093/molbev/msl127
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_68113154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msl127</oup_id><sourcerecordid>68113154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK0evcqexEvs7mY_kqPU-gGFQq0HT2GTneBKko27SaH_3tQUPHp6Z5iHl-FB6JqSe0rSeF67KofdvA4VZeoETamIVUQVTU_RlKhh5iROJugihC9CKOdSnqMJlWmiUsGm6GPrdRMKb9vOugbrxuDlzlX9YdN-jx_3ja5tEbArcfcJeAFN510N3hb4TXdQVbYDvIEWdPd7XGPb4I0t4BKdlboKcHXMGXp_Wm4XL9Fq_fy6eFhFBWe0i4zgSigWJ0by3AxZCqFETigRQoACYIYZKYzKE6KNkowXPDUyJtJwQ5mJZ-h27G29--4hdFltQzE8phtwfchkQmlMBf8XZIQxxmk8gNEIFt6F4KHMWm_rwUZGSXaQno3Ss1H6wN8ci_u8BvNHHy0PwN0IuL79p-sHaiSM-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20222413</pqid></control><display><type>article</type><title>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</title><source>Oxford Journals Open Access Collection</source><creator>Lee, Hye-Ran ; Neumann, Pavel ; Macas, Jiri ; Jiang, Jiming</creator><creatorcontrib>Lee, Hye-Ran ; Neumann, Pavel ; Macas, Jiri ; Jiang, Jiming</creatorcontrib><description>Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msl127</identifier><identifier>PMID: 16987952</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Base Sequence ; Binding Sites ; Centromere - chemistry ; Chromosomes, Plant ; Cloning, Molecular ; DNA, Plant - analysis ; DNA, Satellite - analysis ; DNA-Binding Proteins - metabolism ; Evolution, Molecular ; Genetic Variation ; Molecular Sequence Data ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - isolation &amp; purification ; RNA, Small Interfering - biosynthesis ; Sequence Analysis, DNA ; Transcription, Genetic - physiology</subject><ispartof>Molecular biology and evolution, 2006-12, Vol.23 (12), p.2505-2520</ispartof><rights>The Author 2006. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</citedby><cites>FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/molbev/msl127$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16987952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hye-Ran</creatorcontrib><creatorcontrib>Neumann, Pavel</creatorcontrib><creatorcontrib>Macas, Jiri</creatorcontrib><creatorcontrib>Jiang, Jiming</creatorcontrib><title>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification.</description><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Centromere - chemistry</subject><subject>Chromosomes, Plant</subject><subject>Cloning, Molecular</subject><subject>DNA, Plant - analysis</subject><subject>DNA, Satellite - analysis</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Genetic Variation</subject><subject>Molecular Sequence Data</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - isolation &amp; purification</subject><subject>RNA, Small Interfering - biosynthesis</subject><subject>Sequence Analysis, DNA</subject><subject>Transcription, Genetic - physiology</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK0evcqexEvs7mY_kqPU-gGFQq0HT2GTneBKko27SaH_3tQUPHp6Z5iHl-FB6JqSe0rSeF67KofdvA4VZeoETamIVUQVTU_RlKhh5iROJugihC9CKOdSnqMJlWmiUsGm6GPrdRMKb9vOugbrxuDlzlX9YdN-jx_3ja5tEbArcfcJeAFN510N3hb4TXdQVbYDvIEWdPd7XGPb4I0t4BKdlboKcHXMGXp_Wm4XL9Fq_fy6eFhFBWe0i4zgSigWJ0by3AxZCqFETigRQoACYIYZKYzKE6KNkowXPDUyJtJwQ5mJZ-h27G29--4hdFltQzE8phtwfchkQmlMBf8XZIQxxmk8gNEIFt6F4KHMWm_rwUZGSXaQno3Ss1H6wN8ci_u8BvNHHy0PwN0IuL79p-sHaiSM-A</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Lee, Hye-Ran</creator><creator>Neumann, Pavel</creator><creator>Macas, Jiri</creator><creator>Jiang, Jiming</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</title><author>Lee, Hye-Ran ; Neumann, Pavel ; Macas, Jiri ; Jiang, Jiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Centromere - chemistry</topic><topic>Chromosomes, Plant</topic><topic>Cloning, Molecular</topic><topic>DNA, Plant - analysis</topic><topic>DNA, Satellite - analysis</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Genetic Variation</topic><topic>Molecular Sequence Data</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - isolation &amp; purification</topic><topic>RNA, Small Interfering - biosynthesis</topic><topic>Sequence Analysis, DNA</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hye-Ran</creatorcontrib><creatorcontrib>Neumann, Pavel</creatorcontrib><creatorcontrib>Macas, Jiri</creatorcontrib><creatorcontrib>Jiang, Jiming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Hye-Ran</au><au>Neumann, Pavel</au><au>Macas, Jiri</au><au>Jiang, Jiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>23</volume><issue>12</issue><spage>2505</spage><epage>2520</epage><pages>2505-2520</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>16987952</pmid><doi>10.1093/molbev/msl127</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2006-12, Vol.23 (12), p.2505-2520
issn 0737-4038
1537-1719
language eng
recordid cdi_proquest_miscellaneous_68113154
source Oxford Journals Open Access Collection
subjects Base Sequence
Binding Sites
Centromere - chemistry
Chromosomes, Plant
Cloning, Molecular
DNA, Plant - analysis
DNA, Satellite - analysis
DNA-Binding Proteins - metabolism
Evolution, Molecular
Genetic Variation
Molecular Sequence Data
Oryza - genetics
Oryza - metabolism
Oryza sativa
Phylogeny
Plant Proteins - genetics
Plant Proteins - isolation & purification
RNA, Small Interfering - biosynthesis
Sequence Analysis, DNA
Transcription, Genetic - physiology
title Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcription%20and%20Evolutionary%20Dynamics%20of%20the%20Centromeric%20Satellite%20Repeat%20CentO%20in%20Rice&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Lee,%20Hye-Ran&rft.date=2006-12-01&rft.volume=23&rft.issue=12&rft.spage=2505&rft.epage=2520&rft.pages=2505-2520&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msl127&rft_dat=%3Cproquest_TOX%3E68113154%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20222413&rft_id=info:pmid/16987952&rft_oup_id=10.1093/molbev/msl127&rfr_iscdi=true