Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice
Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved i...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2006-12, Vol.23 (12), p.2505-2520 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2520 |
---|---|
container_issue | 12 |
container_start_page | 2505 |
container_title | Molecular biology and evolution |
container_volume | 23 |
creator | Lee, Hye-Ran Neumann, Pavel Macas, Jiri Jiang, Jiming |
description | Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification. |
doi_str_mv | 10.1093/molbev/msl127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_68113154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msl127</oup_id><sourcerecordid>68113154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK0evcqexEvs7mY_kqPU-gGFQq0HT2GTneBKko27SaH_3tQUPHp6Z5iHl-FB6JqSe0rSeF67KofdvA4VZeoETamIVUQVTU_RlKhh5iROJugihC9CKOdSnqMJlWmiUsGm6GPrdRMKb9vOugbrxuDlzlX9YdN-jx_3ja5tEbArcfcJeAFN510N3hb4TXdQVbYDvIEWdPd7XGPb4I0t4BKdlboKcHXMGXp_Wm4XL9Fq_fy6eFhFBWe0i4zgSigWJ0by3AxZCqFETigRQoACYIYZKYzKE6KNkowXPDUyJtJwQ5mJZ-h27G29--4hdFltQzE8phtwfchkQmlMBf8XZIQxxmk8gNEIFt6F4KHMWm_rwUZGSXaQno3Ss1H6wN8ci_u8BvNHHy0PwN0IuL79p-sHaiSM-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20222413</pqid></control><display><type>article</type><title>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</title><source>Oxford Journals Open Access Collection</source><creator>Lee, Hye-Ran ; Neumann, Pavel ; Macas, Jiri ; Jiang, Jiming</creator><creatorcontrib>Lee, Hye-Ran ; Neumann, Pavel ; Macas, Jiri ; Jiang, Jiming</creatorcontrib><description>Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msl127</identifier><identifier>PMID: 16987952</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Base Sequence ; Binding Sites ; Centromere - chemistry ; Chromosomes, Plant ; Cloning, Molecular ; DNA, Plant - analysis ; DNA, Satellite - analysis ; DNA-Binding Proteins - metabolism ; Evolution, Molecular ; Genetic Variation ; Molecular Sequence Data ; Oryza - genetics ; Oryza - metabolism ; Oryza sativa ; Phylogeny ; Plant Proteins - genetics ; Plant Proteins - isolation & purification ; RNA, Small Interfering - biosynthesis ; Sequence Analysis, DNA ; Transcription, Genetic - physiology</subject><ispartof>Molecular biology and evolution, 2006-12, Vol.23 (12), p.2505-2520</ispartof><rights>The Author 2006. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</citedby><cites>FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/molbev/msl127$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16987952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hye-Ran</creatorcontrib><creatorcontrib>Neumann, Pavel</creatorcontrib><creatorcontrib>Macas, Jiri</creatorcontrib><creatorcontrib>Jiang, Jiming</creatorcontrib><title>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification.</description><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Centromere - chemistry</subject><subject>Chromosomes, Plant</subject><subject>Cloning, Molecular</subject><subject>DNA, Plant - analysis</subject><subject>DNA, Satellite - analysis</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Genetic Variation</subject><subject>Molecular Sequence Data</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Oryza sativa</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - isolation & purification</subject><subject>RNA, Small Interfering - biosynthesis</subject><subject>Sequence Analysis, DNA</subject><subject>Transcription, Genetic - physiology</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK0evcqexEvs7mY_kqPU-gGFQq0HT2GTneBKko27SaH_3tQUPHp6Z5iHl-FB6JqSe0rSeF67KofdvA4VZeoETamIVUQVTU_RlKhh5iROJugihC9CKOdSnqMJlWmiUsGm6GPrdRMKb9vOugbrxuDlzlX9YdN-jx_3ja5tEbArcfcJeAFN510N3hb4TXdQVbYDvIEWdPd7XGPb4I0t4BKdlboKcHXMGXp_Wm4XL9Fq_fy6eFhFBWe0i4zgSigWJ0by3AxZCqFETigRQoACYIYZKYzKE6KNkowXPDUyJtJwQ5mJZ-h27G29--4hdFltQzE8phtwfchkQmlMBf8XZIQxxmk8gNEIFt6F4KHMWm_rwUZGSXaQno3Ss1H6wN8ci_u8BvNHHy0PwN0IuL79p-sHaiSM-A</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Lee, Hye-Ran</creator><creator>Neumann, Pavel</creator><creator>Macas, Jiri</creator><creator>Jiang, Jiming</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20061201</creationdate><title>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</title><author>Lee, Hye-Ran ; Neumann, Pavel ; Macas, Jiri ; Jiang, Jiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d54757238d64bd238f5575b010555e7ee2d2d65d7b80ad7624c49d6306d4d12d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Centromere - chemistry</topic><topic>Chromosomes, Plant</topic><topic>Cloning, Molecular</topic><topic>DNA, Plant - analysis</topic><topic>DNA, Satellite - analysis</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Genetic Variation</topic><topic>Molecular Sequence Data</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Oryza sativa</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - isolation & purification</topic><topic>RNA, Small Interfering - biosynthesis</topic><topic>Sequence Analysis, DNA</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hye-Ran</creatorcontrib><creatorcontrib>Neumann, Pavel</creatorcontrib><creatorcontrib>Macas, Jiri</creatorcontrib><creatorcontrib>Jiang, Jiming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Hye-Ran</au><au>Neumann, Pavel</au><au>Macas, Jiri</au><au>Jiang, Jiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>23</volume><issue>12</issue><spage>2505</spage><epage>2520</epage><pages>2505-2520</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>Satellite DNA is a major component of centromeric heterochromatin in most multicellular eukaryotes, where it is typically organized into megabase-sized tandem arrays. It has recently been demonstrated that small interfering RNAs (siRNAs) processed from centromeric satellite repeats can be involved in epigenetic chromatin modifications which appear to underpin centromere function. However, the structural organization and evolution of the centromeric satellite DNA is still poorly understood. We analyzed the centromeric satellite repeat arrays from rice chromosomes 1 and 8 and identified higher order structures and local homogenization of the CentO repeats in these 2 centromeres. We also cloned the CentO repeats from the CENH3-associated nucleosomes by a chromatin immunoprecipitation (ChIP)–based method. Sequence variability analysis of the ChIPed CentO repeats revealed a single variable domain within the repeat. We detected transcripts derived from both strands of the CentO repeats. The CentO transcripts are processed into siRNA, suggesting a potential role of this satellite repeat family in epigenetic chromatin modification.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>16987952</pmid><doi>10.1093/molbev/msl127</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2006-12, Vol.23 (12), p.2505-2520 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_proquest_miscellaneous_68113154 |
source | Oxford Journals Open Access Collection |
subjects | Base Sequence Binding Sites Centromere - chemistry Chromosomes, Plant Cloning, Molecular DNA, Plant - analysis DNA, Satellite - analysis DNA-Binding Proteins - metabolism Evolution, Molecular Genetic Variation Molecular Sequence Data Oryza - genetics Oryza - metabolism Oryza sativa Phylogeny Plant Proteins - genetics Plant Proteins - isolation & purification RNA, Small Interfering - biosynthesis Sequence Analysis, DNA Transcription, Genetic - physiology |
title | Transcription and Evolutionary Dynamics of the Centromeric Satellite Repeat CentO in Rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcription%20and%20Evolutionary%20Dynamics%20of%20the%20Centromeric%20Satellite%20Repeat%20CentO%20in%20Rice&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Lee,%20Hye-Ran&rft.date=2006-12-01&rft.volume=23&rft.issue=12&rft.spage=2505&rft.epage=2520&rft.pages=2505-2520&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msl127&rft_dat=%3Cproquest_TOX%3E68113154%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20222413&rft_id=info:pmid/16987952&rft_oup_id=10.1093/molbev/msl127&rfr_iscdi=true |