Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue

A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by R, is less than 1, the disease does not invade th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2006-11, Vol.68 (8), p.2263-2282
Hauptverfasser: Coutinho, F A B, Burattini, M N, Lopez, L F, Massad, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2282
container_issue 8
container_start_page 2263
container_title Bulletin of mathematical biology
container_volume 68
creator Coutinho, F A B
Burattini, M N
Lopez, L F
Massad, E
description A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by R, is less than 1, the disease does not invade the populations and when R is greater than 1 it does. By not invading the population we mean that the number of infected individuals always decrease in subsequent seasons of transmission. Using the same threshold, all the qualitative features of the resulting epidemic can be understood. Our model suggests that trans-ovarial infection in the mosquitoes facilitates dengue overwintering. We also explain the delay between the peak in the mosquitoes population and the peak in dengue cases.
doi_str_mv 10.1007/s11538-006-9108-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68112698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68112698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-520de668fb7dd7f98f1d7dc288cd4e786ee0fd342ffc545aa341225f251b269f3</originalsourceid><addsrcrecordid>eNqFkbFuFDEURS1ERJbAB9AgiyKdybPH47FLFEFAikQTastrP2cnmrEHe6bYv8erXQmJhuo15169q0PIBw6fOcBwVznvO80AFDMcNFOvyI73QjCjQLwmOwAjmBYSrsnbWl-gZUxn3pBrrkwvgJsdiU-HgvWQp0B9TmFcx5wqjblQR1NOzG1rTnnOW6W4jAHn0dN6rCvONGD1ZdyP6ZmuB6RLXrbJnfI0HJNrYKU5Nio9b_iOXEU3VXx_uTfk17evT_ff2ePPhx_3Xx6ZlwAra08FVErH_RDCEI2OPAzBC619kDhohQgxdFLE6HvZO9dJLkQfRc_3QpnY3ZDbc-9S8u8N62rnsXqcJpewbbBKc95A_V9QQNcLpWUDP_0DvuStpDbCapCyM0bwBvEz5EuutWC0SxlnV46Wgz2psmdVtqmyJ1VWtczHS_G2nzH8TVzcdH8ALQ-QPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>804439921</pqid></control><display><type>article</type><title>Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Coutinho, F A B ; Burattini, M N ; Lopez, L F ; Massad, E</creator><creatorcontrib>Coutinho, F A B ; Burattini, M N ; Lopez, L F ; Massad, E</creatorcontrib><description>A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by R, is less than 1, the disease does not invade the populations and when R is greater than 1 it does. By not invading the population we mean that the number of infected individuals always decrease in subsequent seasons of transmission. Using the same threshold, all the qualitative features of the resulting epidemic can be understood. Our model suggests that trans-ovarial infection in the mosquitoes facilitates dengue overwintering. We also explain the delay between the peak in the mosquitoes population and the peak in dengue cases.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-006-9108-6</identifier><identifier>PMID: 16952019</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Aedes - growth &amp; development ; Aedes - virology ; Animals ; Brazil - epidemiology ; Computer Simulation ; Dengue - epidemiology ; Dengue - transmission ; Dengue - virology ; Dengue Virus - growth &amp; development ; Disease Outbreaks ; Female ; Humans ; Insect Vectors - growth &amp; development ; Insect Vectors - virology ; Models, Biological ; Seasons</subject><ispartof>Bulletin of mathematical biology, 2006-11, Vol.68 (8), p.2263-2282</ispartof><rights>Springer Science+Business Media, Inc. 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-520de668fb7dd7f98f1d7dc288cd4e786ee0fd342ffc545aa341225f251b269f3</citedby><cites>FETCH-LOGICAL-c400t-520de668fb7dd7f98f1d7dc288cd4e786ee0fd342ffc545aa341225f251b269f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16952019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coutinho, F A B</creatorcontrib><creatorcontrib>Burattini, M N</creatorcontrib><creatorcontrib>Lopez, L F</creatorcontrib><creatorcontrib>Massad, E</creatorcontrib><title>Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><description>A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by R, is less than 1, the disease does not invade the populations and when R is greater than 1 it does. By not invading the population we mean that the number of infected individuals always decrease in subsequent seasons of transmission. Using the same threshold, all the qualitative features of the resulting epidemic can be understood. Our model suggests that trans-ovarial infection in the mosquitoes facilitates dengue overwintering. We also explain the delay between the peak in the mosquitoes population and the peak in dengue cases.</description><subject>Aedes - growth &amp; development</subject><subject>Aedes - virology</subject><subject>Animals</subject><subject>Brazil - epidemiology</subject><subject>Computer Simulation</subject><subject>Dengue - epidemiology</subject><subject>Dengue - transmission</subject><subject>Dengue - virology</subject><subject>Dengue Virus - growth &amp; development</subject><subject>Disease Outbreaks</subject><subject>Female</subject><subject>Humans</subject><subject>Insect Vectors - growth &amp; development</subject><subject>Insect Vectors - virology</subject><subject>Models, Biological</subject><subject>Seasons</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkbFuFDEURS1ERJbAB9AgiyKdybPH47FLFEFAikQTastrP2cnmrEHe6bYv8erXQmJhuo15169q0PIBw6fOcBwVznvO80AFDMcNFOvyI73QjCjQLwmOwAjmBYSrsnbWl-gZUxn3pBrrkwvgJsdiU-HgvWQp0B9TmFcx5wqjblQR1NOzG1rTnnOW6W4jAHn0dN6rCvONGD1ZdyP6ZmuB6RLXrbJnfI0HJNrYKU5Nio9b_iOXEU3VXx_uTfk17evT_ff2ePPhx_3Xx6ZlwAra08FVErH_RDCEI2OPAzBC619kDhohQgxdFLE6HvZO9dJLkQfRc_3QpnY3ZDbc-9S8u8N62rnsXqcJpewbbBKc95A_V9QQNcLpWUDP_0DvuStpDbCapCyM0bwBvEz5EuutWC0SxlnV46Wgz2psmdVtqmyJ1VWtczHS_G2nzH8TVzcdH8ALQ-QPA</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Coutinho, F A B</creator><creator>Burattini, M N</creator><creator>Lopez, L F</creator><creator>Massad, E</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SN</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20061101</creationdate><title>Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue</title><author>Coutinho, F A B ; Burattini, M N ; Lopez, L F ; Massad, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-520de668fb7dd7f98f1d7dc288cd4e786ee0fd342ffc545aa341225f251b269f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aedes - growth &amp; development</topic><topic>Aedes - virology</topic><topic>Animals</topic><topic>Brazil - epidemiology</topic><topic>Computer Simulation</topic><topic>Dengue - epidemiology</topic><topic>Dengue - transmission</topic><topic>Dengue - virology</topic><topic>Dengue Virus - growth &amp; development</topic><topic>Disease Outbreaks</topic><topic>Female</topic><topic>Humans</topic><topic>Insect Vectors - growth &amp; development</topic><topic>Insect Vectors - virology</topic><topic>Models, Biological</topic><topic>Seasons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutinho, F A B</creatorcontrib><creatorcontrib>Burattini, M N</creatorcontrib><creatorcontrib>Lopez, L F</creatorcontrib><creatorcontrib>Massad, E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ecology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutinho, F A B</au><au>Burattini, M N</au><au>Lopez, L F</au><au>Massad, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue</atitle><jtitle>Bulletin of mathematical biology</jtitle><addtitle>Bull Math Biol</addtitle><date>2006-11-01</date><risdate>2006</risdate><volume>68</volume><issue>8</issue><spage>2263</spage><epage>2282</epage><pages>2263-2282</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by R, is less than 1, the disease does not invade the populations and when R is greater than 1 it does. By not invading the population we mean that the number of infected individuals always decrease in subsequent seasons of transmission. Using the same threshold, all the qualitative features of the resulting epidemic can be understood. Our model suggests that trans-ovarial infection in the mosquitoes facilitates dengue overwintering. We also explain the delay between the peak in the mosquitoes population and the peak in dengue cases.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>16952019</pmid><doi>10.1007/s11538-006-9108-6</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2006-11, Vol.68 (8), p.2263-2282
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_68112698
source MEDLINE; SpringerNature Journals
subjects Aedes - growth & development
Aedes - virology
Animals
Brazil - epidemiology
Computer Simulation
Dengue - epidemiology
Dengue - transmission
Dengue - virology
Dengue Virus - growth & development
Disease Outbreaks
Female
Humans
Insect Vectors - growth & development
Insect Vectors - virology
Models, Biological
Seasons
title Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Threshold%20conditions%20for%20a%20non-autonomous%20epidemic%20system%20describing%20the%20population%20dynamics%20of%20dengue&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Coutinho,%20F%20A%20B&rft.date=2006-11-01&rft.volume=68&rft.issue=8&rft.spage=2263&rft.epage=2282&rft.pages=2263-2282&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-006-9108-6&rft_dat=%3Cproquest_cross%3E68112698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=804439921&rft_id=info:pmid/16952019&rfr_iscdi=true