The shape of a Möbius strip

The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180 ∘ , and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs  1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2007-08, Vol.6 (8), p.563-567
Hauptverfasser: Starostin, E. L., van der Heijden, G. H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 8
container_start_page 563
container_title Nature materials
container_volume 6
creator Starostin, E. L.
van der Heijden, G. H. M.
description The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180 ∘ , and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs  1,2 . Here we use the invariant variational bicomplex formalism to derive the first equilibrium equations for a wide developable strip undergoing large deformations, thereby giving the first non-trivial demonstration of the potential of this approach. We then formulate the boundary-value problem for the Möbius strip and solve it numerically. Solutions for increasing width show the formation of creases bounding nearly flat triangular regions, a feature also familiar from fabric draping 3 and paper crumpling 4 , 5 . This could give new insight into energy localization phenomena in unstretchable sheets 6 , which might help to predict points of onset of tearing. It could also aid our understanding of the relationship between geometry and physical properties of nano- and microscopic Möbius strip structures 7 , 8 , 9 .
doi_str_mv 10.1038/nmat1929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68109074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68109074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-8023fc8dfb38334a8b6bbff617a7583307aa6e19d97f5aaa8c7fa4e9c11db0a03</originalsourceid><addsrcrecordid>eNpl0MtKxDAUBuAgiqOj4AOIFBeii2pO0ibNUgZvMOJmXIfTNnE6TC8m7cIX8wV8MSNTGdBVQvLxn8NPyAnQa6A8u2lq7EExtUMOIJEiToSgu-MdgLEJOfR-RSmDNBX7ZAJScJaCOiCni6WJ_BI7E7U2wuj56zOvBh_53lXdEdmzuPbmeDyn5PX-bjF7jOcvD0-z23lc8IT1cUYZt0VW2pxnnCeY5SLPrRUgUabhhUpEYUCVStoUEbNCWkyMKgDKnCLlU3Kxye1c-z4Y3-u68oVZr7Ex7eC1yIAqKpMAz__AVTu4JuymGWNhmEogoMsNKlzrvTNWd66q0X1ooPqnLv1bV6BnY96Q16bcwrGfAK42wIev5s247cB_Yd_gBXHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222758941</pqid></control><display><type>article</type><title>The shape of a Möbius strip</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Starostin, E. L. ; van der Heijden, G. H. M.</creator><creatorcontrib>Starostin, E. L. ; van der Heijden, G. H. M.</creatorcontrib><description>The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180 ∘ , and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs  1,2 . Here we use the invariant variational bicomplex formalism to derive the first equilibrium equations for a wide developable strip undergoing large deformations, thereby giving the first non-trivial demonstration of the potential of this approach. We then formulate the boundary-value problem for the Möbius strip and solve it numerically. Solutions for increasing width show the formation of creases bounding nearly flat triangular regions, a feature also familiar from fabric draping 3 and paper crumpling 4 , 5 . This could give new insight into energy localization phenomena in unstretchable sheets 6 , which might help to predict points of onset of tearing. It could also aid our understanding of the relationship between geometry and physical properties of nano- and microscopic Möbius strip structures 7 , 8 , 9 .</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat1929</identifier><identifier>PMID: 17632519</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Civil engineering ; Condensed Matter Physics ; Equilibrium ; Fabrics ; letter ; Materials Science ; Microstructure ; Nanotechnology ; Numerical analysis ; Optical and Electronic Materials ; Physical properties ; Physics</subject><ispartof>Nature materials, 2007-08, Vol.6 (8), p.563-567</ispartof><rights>Springer Nature Limited 2007</rights><rights>Copyright Nature Publishing Group Aug 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-8023fc8dfb38334a8b6bbff617a7583307aa6e19d97f5aaa8c7fa4e9c11db0a03</citedby><cites>FETCH-LOGICAL-c342t-8023fc8dfb38334a8b6bbff617a7583307aa6e19d97f5aaa8c7fa4e9c11db0a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat1929$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat1929$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17632519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Starostin, E. L.</creatorcontrib><creatorcontrib>van der Heijden, G. H. M.</creatorcontrib><title>The shape of a Möbius strip</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180 ∘ , and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs  1,2 . Here we use the invariant variational bicomplex formalism to derive the first equilibrium equations for a wide developable strip undergoing large deformations, thereby giving the first non-trivial demonstration of the potential of this approach. We then formulate the boundary-value problem for the Möbius strip and solve it numerically. Solutions for increasing width show the formation of creases bounding nearly flat triangular regions, a feature also familiar from fabric draping 3 and paper crumpling 4 , 5 . This could give new insight into energy localization phenomena in unstretchable sheets 6 , which might help to predict points of onset of tearing. It could also aid our understanding of the relationship between geometry and physical properties of nano- and microscopic Möbius strip structures 7 , 8 , 9 .</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Civil engineering</subject><subject>Condensed Matter Physics</subject><subject>Equilibrium</subject><subject>Fabrics</subject><subject>letter</subject><subject>Materials Science</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Numerical analysis</subject><subject>Optical and Electronic Materials</subject><subject>Physical properties</subject><subject>Physics</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0MtKxDAUBuAgiqOj4AOIFBeii2pO0ibNUgZvMOJmXIfTNnE6TC8m7cIX8wV8MSNTGdBVQvLxn8NPyAnQa6A8u2lq7EExtUMOIJEiToSgu-MdgLEJOfR-RSmDNBX7ZAJScJaCOiCni6WJ_BI7E7U2wuj56zOvBh_53lXdEdmzuPbmeDyn5PX-bjF7jOcvD0-z23lc8IT1cUYZt0VW2pxnnCeY5SLPrRUgUabhhUpEYUCVStoUEbNCWkyMKgDKnCLlU3Kxye1c-z4Y3-u68oVZr7Ex7eC1yIAqKpMAz__AVTu4JuymGWNhmEogoMsNKlzrvTNWd66q0X1ooPqnLv1bV6BnY96Q16bcwrGfAK42wIev5s247cB_Yd_gBXHB</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Starostin, E. L.</creator><creator>van der Heijden, G. H. M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>The shape of a Möbius strip</title><author>Starostin, E. L. ; van der Heijden, G. H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-8023fc8dfb38334a8b6bbff617a7583307aa6e19d97f5aaa8c7fa4e9c11db0a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Civil engineering</topic><topic>Condensed Matter Physics</topic><topic>Equilibrium</topic><topic>Fabrics</topic><topic>letter</topic><topic>Materials Science</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Numerical analysis</topic><topic>Optical and Electronic Materials</topic><topic>Physical properties</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starostin, E. L.</creatorcontrib><creatorcontrib>van der Heijden, G. H. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starostin, E. L.</au><au>van der Heijden, G. H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shape of a Möbius strip</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>6</volume><issue>8</issue><spage>563</spage><epage>567</epage><pages>563-567</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180 ∘ , and then joining the ends, is the canonical example of a one-sided surface. Finding its characteristic developable shape has been an open problem ever since its first formulation in refs  1,2 . Here we use the invariant variational bicomplex formalism to derive the first equilibrium equations for a wide developable strip undergoing large deformations, thereby giving the first non-trivial demonstration of the potential of this approach. We then formulate the boundary-value problem for the Möbius strip and solve it numerically. Solutions for increasing width show the formation of creases bounding nearly flat triangular regions, a feature also familiar from fabric draping 3 and paper crumpling 4 , 5 . This could give new insight into energy localization phenomena in unstretchable sheets 6 , which might help to predict points of onset of tearing. It could also aid our understanding of the relationship between geometry and physical properties of nano- and microscopic Möbius strip structures 7 , 8 , 9 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17632519</pmid><doi>10.1038/nmat1929</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2007-08, Vol.6 (8), p.563-567
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_68109074
source Springer Nature - Complete Springer Journals; Nature
subjects Biomaterials
Chemistry and Materials Science
Civil engineering
Condensed Matter Physics
Equilibrium
Fabrics
letter
Materials Science
Microstructure
Nanotechnology
Numerical analysis
Optical and Electronic Materials
Physical properties
Physics
title The shape of a Möbius strip
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A11%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shape%20of%20a%20M%C3%B6bius%20strip&rft.jtitle=Nature%20materials&rft.au=Starostin,%20E.%20L.&rft.date=2007-08-01&rft.volume=6&rft.issue=8&rft.spage=563&rft.epage=567&rft.pages=563-567&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat1929&rft_dat=%3Cproquest_cross%3E68109074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222758941&rft_id=info:pmid/17632519&rfr_iscdi=true