Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways

The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2007-07, Vol.47 (4), p.1702-1712
Hauptverfasser: Oh, Mina, Yamada, Takuji, Hattori, Masahiro, Goto, Susumu, Kanehisa, Minoru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1712
container_issue 4
container_start_page 1702
container_title Journal of chemical information and modeling
container_volume 47
creator Oh, Mina
Yamada, Takuji
Hattori, Masahiro
Goto, Susumu
Kanehisa, Minoru
description The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.
doi_str_mv 10.1021/ci700006f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68099212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1310532711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</originalsourceid><addsrcrecordid>eNplkd9PFDEQxxsjEQQf_AfMxkQTHxbabre7fYQLiOQIh2By8aWZa6da3B_Y7gWWv96aPSDRvrSZfuY7M98h5C2j-4xydmB8RdOR7gXZYaVQuZJ0-fLxXSq5TV7HeENpUSjJX5FtVpVMSkF3SHs1xgFbGLzJDjtoxuhj1rvsuHsYW8xnMKTYA9rsK4IZfN9lCxgGDF3MoLPZIqD1UzwlnXsT-pWHJjvyvcUfASw85vy8gzHukS0HTcQ3m3uXfDs5vp6d5vOLz19mh_MchBBDrrhzSHnBBFjHVI2yoMIIUwrKLRdYGFsBrqBGK-oKahAOnamRi0I5VZbFLvk46d6G_vca46BbHw02DXTYr6OWNVWKM57A9_-AN_06JB-i5kxywSpeJejTBKXpYgzo9G3wLYRRM6r_LkA_LSCx7zaC61WL9pncOJ6AfAJ88v3-6R_CLy2roir19eJKXy7PTvhyfqq_J_7DxIOJz839X_gPpKGdGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216241727</pqid></control><display><type>article</type><title>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</title><source>ACS Publications</source><source>MEDLINE</source><creator>Oh, Mina ; Yamada, Takuji ; Hattori, Masahiro ; Goto, Susumu ; Kanehisa, Minoru</creator><creatorcontrib>Oh, Mina ; Yamada, Takuji ; Hattori, Masahiro ; Goto, Susumu ; Kanehisa, Minoru</creatorcontrib><description>The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci700006f</identifier><identifier>PMID: 17516640</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria - metabolism ; Biodegradation ; Bioinformatics ; Catalysis ; Enzymes ; Enzymes - metabolism ; Microbiology ; Microorganisms ; Molecular Structure ; Xenobiotics - metabolism</subject><ispartof>Journal of chemical information and modeling, 2007-07, Vol.47 (4), p.1702-1712</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</citedby><cites>FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci700006f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci700006f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17516640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Mina</creatorcontrib><creatorcontrib>Yamada, Takuji</creatorcontrib><creatorcontrib>Hattori, Masahiro</creatorcontrib><creatorcontrib>Goto, Susumu</creatorcontrib><creatorcontrib>Kanehisa, Minoru</creatorcontrib><title>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.</description><subject>Bacteria - metabolism</subject><subject>Biodegradation</subject><subject>Bioinformatics</subject><subject>Catalysis</subject><subject>Enzymes</subject><subject>Enzymes - metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Molecular Structure</subject><subject>Xenobiotics - metabolism</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkd9PFDEQxxsjEQQf_AfMxkQTHxbabre7fYQLiOQIh2By8aWZa6da3B_Y7gWWv96aPSDRvrSZfuY7M98h5C2j-4xydmB8RdOR7gXZYaVQuZJ0-fLxXSq5TV7HeENpUSjJX5FtVpVMSkF3SHs1xgFbGLzJDjtoxuhj1rvsuHsYW8xnMKTYA9rsK4IZfN9lCxgGDF3MoLPZIqD1UzwlnXsT-pWHJjvyvcUfASw85vy8gzHukS0HTcQ3m3uXfDs5vp6d5vOLz19mh_MchBBDrrhzSHnBBFjHVI2yoMIIUwrKLRdYGFsBrqBGK-oKahAOnamRi0I5VZbFLvk46d6G_vca46BbHw02DXTYr6OWNVWKM57A9_-AN_06JB-i5kxywSpeJejTBKXpYgzo9G3wLYRRM6r_LkA_LSCx7zaC61WL9pncOJ6AfAJ88v3-6R_CLy2roir19eJKXy7PTvhyfqq_J_7DxIOJz839X_gPpKGdGg</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Oh, Mina</creator><creator>Yamada, Takuji</creator><creator>Hattori, Masahiro</creator><creator>Goto, Susumu</creator><creator>Kanehisa, Minoru</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</title><author>Oh, Mina ; Yamada, Takuji ; Hattori, Masahiro ; Goto, Susumu ; Kanehisa, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bacteria - metabolism</topic><topic>Biodegradation</topic><topic>Bioinformatics</topic><topic>Catalysis</topic><topic>Enzymes</topic><topic>Enzymes - metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Molecular Structure</topic><topic>Xenobiotics - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Mina</creatorcontrib><creatorcontrib>Yamada, Takuji</creatorcontrib><creatorcontrib>Hattori, Masahiro</creatorcontrib><creatorcontrib>Goto, Susumu</creatorcontrib><creatorcontrib>Kanehisa, Minoru</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Mina</au><au>Yamada, Takuji</au><au>Hattori, Masahiro</au><au>Goto, Susumu</au><au>Kanehisa, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>47</volume><issue>4</issue><spage>1702</spage><epage>1712</epage><pages>1702-1712</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17516640</pmid><doi>10.1021/ci700006f</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2007-07, Vol.47 (4), p.1702-1712
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_68099212
source ACS Publications; MEDLINE
subjects Bacteria - metabolism
Biodegradation
Bioinformatics
Catalysis
Enzymes
Enzymes - metabolism
Microbiology
Microorganisms
Molecular Structure
Xenobiotics - metabolism
title Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Analysis%20of%20Enzyme-Catalyzed%20Reaction%20Patterns%20and%20Prediction%20of%20Microbial%20Biodegradation%20Pathways&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Oh,%20Mina&rft.date=2007-07-01&rft.volume=47&rft.issue=4&rft.spage=1702&rft.epage=1712&rft.pages=1702-1712&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci700006f&rft_dat=%3Cproquest_cross%3E1310532711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216241727&rft_id=info:pmid/17516640&rfr_iscdi=true