Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways
The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2007-07, Vol.47 (4), p.1702-1712 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1712 |
---|---|
container_issue | 4 |
container_start_page | 1702 |
container_title | Journal of chemical information and modeling |
container_volume | 47 |
creator | Oh, Mina Yamada, Takuji Hattori, Masahiro Goto, Susumu Kanehisa, Minoru |
description | The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds. |
doi_str_mv | 10.1021/ci700006f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68099212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1310532711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</originalsourceid><addsrcrecordid>eNplkd9PFDEQxxsjEQQf_AfMxkQTHxbabre7fYQLiOQIh2By8aWZa6da3B_Y7gWWv96aPSDRvrSZfuY7M98h5C2j-4xydmB8RdOR7gXZYaVQuZJ0-fLxXSq5TV7HeENpUSjJX5FtVpVMSkF3SHs1xgFbGLzJDjtoxuhj1rvsuHsYW8xnMKTYA9rsK4IZfN9lCxgGDF3MoLPZIqD1UzwlnXsT-pWHJjvyvcUfASw85vy8gzHukS0HTcQ3m3uXfDs5vp6d5vOLz19mh_MchBBDrrhzSHnBBFjHVI2yoMIIUwrKLRdYGFsBrqBGK-oKahAOnamRi0I5VZbFLvk46d6G_vca46BbHw02DXTYr6OWNVWKM57A9_-AN_06JB-i5kxywSpeJejTBKXpYgzo9G3wLYRRM6r_LkA_LSCx7zaC61WL9pncOJ6AfAJ88v3-6R_CLy2roir19eJKXy7PTvhyfqq_J_7DxIOJz839X_gPpKGdGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216241727</pqid></control><display><type>article</type><title>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</title><source>ACS Publications</source><source>MEDLINE</source><creator>Oh, Mina ; Yamada, Takuji ; Hattori, Masahiro ; Goto, Susumu ; Kanehisa, Minoru</creator><creatorcontrib>Oh, Mina ; Yamada, Takuji ; Hattori, Masahiro ; Goto, Susumu ; Kanehisa, Minoru</creatorcontrib><description>The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/ci700006f</identifier><identifier>PMID: 17516640</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteria - metabolism ; Biodegradation ; Bioinformatics ; Catalysis ; Enzymes ; Enzymes - metabolism ; Microbiology ; Microorganisms ; Molecular Structure ; Xenobiotics - metabolism</subject><ispartof>Journal of chemical information and modeling, 2007-07, Vol.47 (4), p.1702-1712</ispartof><rights>Copyright © 2007 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</citedby><cites>FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ci700006f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ci700006f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17516640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Mina</creatorcontrib><creatorcontrib>Yamada, Takuji</creatorcontrib><creatorcontrib>Hattori, Masahiro</creatorcontrib><creatorcontrib>Goto, Susumu</creatorcontrib><creatorcontrib>Kanehisa, Minoru</creatorcontrib><title>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.</description><subject>Bacteria - metabolism</subject><subject>Biodegradation</subject><subject>Bioinformatics</subject><subject>Catalysis</subject><subject>Enzymes</subject><subject>Enzymes - metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Molecular Structure</subject><subject>Xenobiotics - metabolism</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkd9PFDEQxxsjEQQf_AfMxkQTHxbabre7fYQLiOQIh2By8aWZa6da3B_Y7gWWv96aPSDRvrSZfuY7M98h5C2j-4xydmB8RdOR7gXZYaVQuZJ0-fLxXSq5TV7HeENpUSjJX5FtVpVMSkF3SHs1xgFbGLzJDjtoxuhj1rvsuHsYW8xnMKTYA9rsK4IZfN9lCxgGDF3MoLPZIqD1UzwlnXsT-pWHJjvyvcUfASw85vy8gzHukS0HTcQ3m3uXfDs5vp6d5vOLz19mh_MchBBDrrhzSHnBBFjHVI2yoMIIUwrKLRdYGFsBrqBGK-oKahAOnamRi0I5VZbFLvk46d6G_vca46BbHw02DXTYr6OWNVWKM57A9_-AN_06JB-i5kxywSpeJejTBKXpYgzo9G3wLYRRM6r_LkA_LSCx7zaC61WL9pncOJ6AfAJ88v3-6R_CLy2roir19eJKXy7PTvhyfqq_J_7DxIOJz839X_gPpKGdGg</recordid><startdate>20070701</startdate><enddate>20070701</enddate><creator>Oh, Mina</creator><creator>Yamada, Takuji</creator><creator>Hattori, Masahiro</creator><creator>Goto, Susumu</creator><creator>Kanehisa, Minoru</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20070701</creationdate><title>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</title><author>Oh, Mina ; Yamada, Takuji ; Hattori, Masahiro ; Goto, Susumu ; Kanehisa, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-92ffe02314adf198e6304c4c5402d24e3cd7aeba8ed487a8a4fefc8e2439f9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bacteria - metabolism</topic><topic>Biodegradation</topic><topic>Bioinformatics</topic><topic>Catalysis</topic><topic>Enzymes</topic><topic>Enzymes - metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Molecular Structure</topic><topic>Xenobiotics - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Mina</creatorcontrib><creatorcontrib>Yamada, Takuji</creatorcontrib><creatorcontrib>Hattori, Masahiro</creatorcontrib><creatorcontrib>Goto, Susumu</creatorcontrib><creatorcontrib>Kanehisa, Minoru</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Mina</au><au>Yamada, Takuji</au><au>Hattori, Masahiro</au><au>Goto, Susumu</au><au>Kanehisa, Minoru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2007-07-01</date><risdate>2007</risdate><volume>47</volume><issue>4</issue><spage>1702</spage><epage>1712</epage><pages>1702-1712</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17516640</pmid><doi>10.1021/ci700006f</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2007-07, Vol.47 (4), p.1702-1712 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_68099212 |
source | ACS Publications; MEDLINE |
subjects | Bacteria - metabolism Biodegradation Bioinformatics Catalysis Enzymes Enzymes - metabolism Microbiology Microorganisms Molecular Structure Xenobiotics - metabolism |
title | Systematic Analysis of Enzyme-Catalyzed Reaction Patterns and Prediction of Microbial Biodegradation Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Analysis%20of%20Enzyme-Catalyzed%20Reaction%20Patterns%20and%20Prediction%20of%20Microbial%20Biodegradation%20Pathways&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Oh,%20Mina&rft.date=2007-07-01&rft.volume=47&rft.issue=4&rft.spage=1702&rft.epage=1712&rft.pages=1702-1712&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/ci700006f&rft_dat=%3Cproquest_cross%3E1310532711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216241727&rft_id=info:pmid/17516640&rfr_iscdi=true |