Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants

The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding abi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2007-09, Vol.82A (3), p.521-529
Hauptverfasser: Aparicio, C., Manero, J.M., Conde, F., Pegueroles, M., Planell, J.A., Vallet-Regí, M., Gil, F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 3
container_start_page 521
container_title Journal of biomedical materials research. Part A
container_volume 82A
creator Aparicio, C.
Manero, J.M.
Conde, F.
Pegueroles, M.
Planell, J.A.
Vallet-Regí, M.
Gil, F.J.
description The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007
doi_str_mv 10.1002/jbm.a.31164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68098570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30021607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</originalsourceid><addsrcrecordid>eNqFkDlPAzEQhS0E4ghU9MgVDdpge33EJWcAcTQgSst2vGDYXQd7l-Pf45AAHVTzNPrmad4DYBujIUaI7D-ZZqiHJcacLoF1zBgpqORseaapLEoi-RrYSOkpwxwxsgrWsCCSEcrWgTqw1tUu6s6HFoYK6mmWnYNtb2u32Law8TaGGPqHR2h80Lbzrw5mTre-b2AVIjShdUV001pb3z5A32TVdmkTrFS6Tm5rMQfg7vTk9uisuLwZnx8dXBaWckoLjAQRZjThRtsJoqy0gkwMZihrzZC2lrmcA3PJNB0RISqDTCWkkUhWlZPlAOzOfacxvPQudarxKSfLT7jQJ8VHSI6YQP-CZW4JcyQyuDcHc_KUoqvUNPpGxw-FkZoVr3LxSquv4jO9s7DtTeMmv-yi6QzgOfDma_fxl5e6OLz6Ni3mNz517v3nRsdnxUUpmLq_Hit6gQ-PJb5S4_ITq3-d3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30021607</pqid></control><display><type>article</type><title>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aparicio, C. ; Manero, J.M. ; Conde, F. ; Pegueroles, M. ; Planell, J.A. ; Vallet-Regí, M. ; Gil, F.J.</creator><creatorcontrib>Aparicio, C. ; Manero, J.M. ; Conde, F. ; Pegueroles, M. ; Planell, J.A. ; Vallet-Regí, M. ; Gil, F.J.</creatorcontrib><description>The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.31164</identifier><identifier>PMID: 17295245</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aluminum Oxide ; apatite nucleation ; Apatites - therapeutic use ; bioactivity ; Biocompatible Materials ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Coated Materials, Biocompatible - chemical synthesis ; Coated Materials, Biocompatible - chemistry ; grit blasting ; Materials Testing ; Surface Properties ; titanium ; Titanium - therapeutic use ; topography</subject><ispartof>Journal of biomedical materials research. Part A, 2007-09, Vol.82A (3), p.521-529</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</citedby><cites>FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.31164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.31164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17295245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aparicio, C.</creatorcontrib><creatorcontrib>Manero, J.M.</creatorcontrib><creatorcontrib>Conde, F.</creatorcontrib><creatorcontrib>Pegueroles, M.</creatorcontrib><creatorcontrib>Planell, J.A.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><creatorcontrib>Gil, F.J.</creatorcontrib><title>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</description><subject>Aluminum Oxide</subject><subject>apatite nucleation</subject><subject>Apatites - therapeutic use</subject><subject>bioactivity</subject><subject>Biocompatible Materials</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Coated Materials, Biocompatible - chemical synthesis</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>grit blasting</subject><subject>Materials Testing</subject><subject>Surface Properties</subject><subject>titanium</subject><subject>Titanium - therapeutic use</subject><subject>topography</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDlPAzEQhS0E4ghU9MgVDdpge33EJWcAcTQgSst2vGDYXQd7l-Pf45AAHVTzNPrmad4DYBujIUaI7D-ZZqiHJcacLoF1zBgpqORseaapLEoi-RrYSOkpwxwxsgrWsCCSEcrWgTqw1tUu6s6HFoYK6mmWnYNtb2u32Law8TaGGPqHR2h80Lbzrw5mTre-b2AVIjShdUV001pb3z5A32TVdmkTrFS6Tm5rMQfg7vTk9uisuLwZnx8dXBaWckoLjAQRZjThRtsJoqy0gkwMZihrzZC2lrmcA3PJNB0RISqDTCWkkUhWlZPlAOzOfacxvPQudarxKSfLT7jQJ8VHSI6YQP-CZW4JcyQyuDcHc_KUoqvUNPpGxw-FkZoVr3LxSquv4jO9s7DtTeMmv-yi6QzgOfDma_fxl5e6OLz6Ni3mNz517v3nRsdnxUUpmLq_Hit6gQ-PJb5S4_ITq3-d3A</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Aparicio, C.</creator><creator>Manero, J.M.</creator><creator>Conde, F.</creator><creator>Pegueroles, M.</creator><creator>Planell, J.A.</creator><creator>Vallet-Regí, M.</creator><creator>Gil, F.J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</title><author>Aparicio, C. ; Manero, J.M. ; Conde, F. ; Pegueroles, M. ; Planell, J.A. ; Vallet-Regí, M. ; Gil, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aluminum Oxide</topic><topic>apatite nucleation</topic><topic>Apatites - therapeutic use</topic><topic>bioactivity</topic><topic>Biocompatible Materials</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Coated Materials, Biocompatible - chemical synthesis</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>grit blasting</topic><topic>Materials Testing</topic><topic>Surface Properties</topic><topic>titanium</topic><topic>Titanium - therapeutic use</topic><topic>topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aparicio, C.</creatorcontrib><creatorcontrib>Manero, J.M.</creatorcontrib><creatorcontrib>Conde, F.</creatorcontrib><creatorcontrib>Pegueroles, M.</creatorcontrib><creatorcontrib>Planell, J.A.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><creatorcontrib>Gil, F.J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aparicio, C.</au><au>Manero, J.M.</au><au>Conde, F.</au><au>Pegueroles, M.</au><au>Planell, J.A.</au><au>Vallet-Regí, M.</au><au>Gil, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>82A</volume><issue>3</issue><spage>521</spage><epage>529</epage><pages>521-529</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17295245</pmid><doi>10.1002/jbm.a.31164</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2007-09, Vol.82A (3), p.521-529
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_68098570
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aluminum Oxide
apatite nucleation
Apatites - therapeutic use
bioactivity
Biocompatible Materials
Bone Substitutes - chemical synthesis
Bone Substitutes - chemistry
Coated Materials, Biocompatible - chemical synthesis
Coated Materials, Biocompatible - chemistry
grit blasting
Materials Testing
Surface Properties
titanium
Titanium - therapeutic use
topography
title Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20apatite%20nucleation%20on%20microrough%20bioactive%20titanium%20for%20bone-replacing%20implants&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Aparicio,%20C.&rft.date=2007-09-01&rft.volume=82A&rft.issue=3&rft.spage=521&rft.epage=529&rft.pages=521-529&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31164&rft_dat=%3Cproquest_cross%3E30021607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30021607&rft_id=info:pmid/17295245&rfr_iscdi=true