Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants
The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding abi...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2007-09, Vol.82A (3), p.521-529 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | 3 |
container_start_page | 521 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 82A |
creator | Aparicio, C. Manero, J.M. Conde, F. Pegueroles, M. Planell, J.A. Vallet-Regí, M. Gil, F.J. |
description | The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007 |
doi_str_mv | 10.1002/jbm.a.31164 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68098570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>30021607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</originalsourceid><addsrcrecordid>eNqFkDlPAzEQhS0E4ghU9MgVDdpge33EJWcAcTQgSst2vGDYXQd7l-Pf45AAHVTzNPrmad4DYBujIUaI7D-ZZqiHJcacLoF1zBgpqORseaapLEoi-RrYSOkpwxwxsgrWsCCSEcrWgTqw1tUu6s6HFoYK6mmWnYNtb2u32Law8TaGGPqHR2h80Lbzrw5mTre-b2AVIjShdUV001pb3z5A32TVdmkTrFS6Tm5rMQfg7vTk9uisuLwZnx8dXBaWckoLjAQRZjThRtsJoqy0gkwMZihrzZC2lrmcA3PJNB0RISqDTCWkkUhWlZPlAOzOfacxvPQudarxKSfLT7jQJ8VHSI6YQP-CZW4JcyQyuDcHc_KUoqvUNPpGxw-FkZoVr3LxSquv4jO9s7DtTeMmv-yi6QzgOfDma_fxl5e6OLz6Ni3mNz517v3nRsdnxUUpmLq_Hit6gQ-PJb5S4_ITq3-d3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>30021607</pqid></control><display><type>article</type><title>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aparicio, C. ; Manero, J.M. ; Conde, F. ; Pegueroles, M. ; Planell, J.A. ; Vallet-Regí, M. ; Gil, F.J.</creator><creatorcontrib>Aparicio, C. ; Manero, J.M. ; Conde, F. ; Pegueroles, M. ; Planell, J.A. ; Vallet-Regí, M. ; Gil, F.J.</creatorcontrib><description>The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.31164</identifier><identifier>PMID: 17295245</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aluminum Oxide ; apatite nucleation ; Apatites - therapeutic use ; bioactivity ; Biocompatible Materials ; Bone Substitutes - chemical synthesis ; Bone Substitutes - chemistry ; Coated Materials, Biocompatible - chemical synthesis ; Coated Materials, Biocompatible - chemistry ; grit blasting ; Materials Testing ; Surface Properties ; titanium ; Titanium - therapeutic use ; topography</subject><ispartof>Journal of biomedical materials research. Part A, 2007-09, Vol.82A (3), p.521-529</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</citedby><cites>FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.31164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.31164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17295245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aparicio, C.</creatorcontrib><creatorcontrib>Manero, J.M.</creatorcontrib><creatorcontrib>Conde, F.</creatorcontrib><creatorcontrib>Pegueroles, M.</creatorcontrib><creatorcontrib>Planell, J.A.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><creatorcontrib>Gil, F.J.</creatorcontrib><title>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</description><subject>Aluminum Oxide</subject><subject>apatite nucleation</subject><subject>Apatites - therapeutic use</subject><subject>bioactivity</subject><subject>Biocompatible Materials</subject><subject>Bone Substitutes - chemical synthesis</subject><subject>Bone Substitutes - chemistry</subject><subject>Coated Materials, Biocompatible - chemical synthesis</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>grit blasting</subject><subject>Materials Testing</subject><subject>Surface Properties</subject><subject>titanium</subject><subject>Titanium - therapeutic use</subject><subject>topography</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDlPAzEQhS0E4ghU9MgVDdpge33EJWcAcTQgSst2vGDYXQd7l-Pf45AAHVTzNPrmad4DYBujIUaI7D-ZZqiHJcacLoF1zBgpqORseaapLEoi-RrYSOkpwxwxsgrWsCCSEcrWgTqw1tUu6s6HFoYK6mmWnYNtb2u32Law8TaGGPqHR2h80Lbzrw5mTre-b2AVIjShdUV001pb3z5A32TVdmkTrFS6Tm5rMQfg7vTk9uisuLwZnx8dXBaWckoLjAQRZjThRtsJoqy0gkwMZihrzZC2lrmcA3PJNB0RISqDTCWkkUhWlZPlAOzOfacxvPQudarxKSfLT7jQJ8VHSI6YQP-CZW4JcyQyuDcHc_KUoqvUNPpGxw-FkZoVr3LxSquv4jO9s7DtTeMmv-yi6QzgOfDma_fxl5e6OLz6Ni3mNz517v3nRsdnxUUpmLq_Hit6gQ-PJb5S4_ITq3-d3A</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Aparicio, C.</creator><creator>Manero, J.M.</creator><creator>Conde, F.</creator><creator>Pegueroles, M.</creator><creator>Planell, J.A.</creator><creator>Vallet-Regí, M.</creator><creator>Gil, F.J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20070901</creationdate><title>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</title><author>Aparicio, C. ; Manero, J.M. ; Conde, F. ; Pegueroles, M. ; Planell, J.A. ; Vallet-Regí, M. ; Gil, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4644-10727b8d6bacd0453c72db150045a50acc5e2961695a48277fb0bf79b909ffe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aluminum Oxide</topic><topic>apatite nucleation</topic><topic>Apatites - therapeutic use</topic><topic>bioactivity</topic><topic>Biocompatible Materials</topic><topic>Bone Substitutes - chemical synthesis</topic><topic>Bone Substitutes - chemistry</topic><topic>Coated Materials, Biocompatible - chemical synthesis</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>grit blasting</topic><topic>Materials Testing</topic><topic>Surface Properties</topic><topic>titanium</topic><topic>Titanium - therapeutic use</topic><topic>topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aparicio, C.</creatorcontrib><creatorcontrib>Manero, J.M.</creatorcontrib><creatorcontrib>Conde, F.</creatorcontrib><creatorcontrib>Pegueroles, M.</creatorcontrib><creatorcontrib>Planell, J.A.</creatorcontrib><creatorcontrib>Vallet-Regí, M.</creatorcontrib><creatorcontrib>Gil, F.J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aparicio, C.</au><au>Manero, J.M.</au><au>Conde, F.</au><au>Pegueroles, M.</au><au>Planell, J.A.</au><au>Vallet-Regí, M.</au><au>Gil, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2007-09-01</date><risdate>2007</risdate><volume>82A</volume><issue>3</issue><spage>521</spage><epage>529</epage><pages>521-529</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The viability of a new two‐step method for obtaining bioactive microrough titanium surfaces for bone replacing implants has been evaluated. The method consists of (1) Grit blasting on titanium surface to roughen it; and (2) Thermo‐chemical treating to obtain a bioactive surface with bone‐bonding ability by means of nucleating and growing an apatite layer on the treated surface of the metal. The aim of this work is to evaluate the effect of surface roughness and chemical composition of the grit‐blasting particles on the ability of the surfaces of nucleating and growing a homogeneous apatite layer. The determination and kinetics of the nucleation and growing of the apatite layer on the surfaces has mainly been studied with environmental scanning electron microscopy (ESEM) and grazing‐incidence X‐ray diffractometry. The results show that Al2O3‐blasted and thermochemically‐treated titanium surfaces accelerates nucleation of the apatite, whereas SiC‐blasted and thermochemically‐treated titanium surfaces inhibits apatite nucleation, compared with the well studied polished and thermochemically‐treated titanium surfaces. The acceleration of the apatite nucleation on the Al2O3‐blasted microrough titanium surfaces is because concave parts of the microroughness that are obtained during grit blasting provides to the rough and bioactive surfaces with a chemical‐ and electrostatic‐favored situation for apatite nucleation. This consists of a high density of surface negative charges (also assisted by the nanoroughness of the surface obtained after the thermochemical treatment) and an increased concentration of the Ca2+‐ions of the fluid, which have a limited mobility at the bottom of the concave parts. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2007</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17295245</pmid><doi>10.1002/jbm.a.31164</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2007-09, Vol.82A (3), p.521-529 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_68098570 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum Oxide apatite nucleation Apatites - therapeutic use bioactivity Biocompatible Materials Bone Substitutes - chemical synthesis Bone Substitutes - chemistry Coated Materials, Biocompatible - chemical synthesis Coated Materials, Biocompatible - chemistry grit blasting Materials Testing Surface Properties titanium Titanium - therapeutic use topography |
title | Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A07%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20apatite%20nucleation%20on%20microrough%20bioactive%20titanium%20for%20bone-replacing%20implants&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Aparicio,%20C.&rft.date=2007-09-01&rft.volume=82A&rft.issue=3&rft.spage=521&rft.epage=529&rft.pages=521-529&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.31164&rft_dat=%3Cproquest_cross%3E30021607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=30021607&rft_id=info:pmid/17295245&rfr_iscdi=true |