Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients

Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-beta is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical oncology 2005-08, Vol.23 (22), p.5088-5093
Hauptverfasser: MIAN, Shahid, UGUREL, Selma, PARKINSON, Erika, SCHLENZKA, Iris, DRYDEN, Ian, LANCASHIRE, Lee, BALL, Graham, CREASER, Colin, REES, Robert, SCHADENDORF, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5093
container_issue 22
container_start_page 5088
container_title Journal of clinical oncology
container_volume 23
creator MIAN, Shahid
UGUREL, Selma
PARKINSON, Erika
SCHLENZKA, Iris
DRYDEN, Ian
LANCASHIRE, Lee
BALL, Graham
CREASER, Colin
REES, Robert
SCHADENDORF, Dirk
description Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-beta is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular profiling of the serum proteome could discriminate between early- and late-stage melanoma and predict disease progression. Two hundred five serum samples from 101 early-stage (American Joint Committee on Cancer [AJCC] stage I) and 104 advanced stage (AJCC stage IV) melanoma patients were analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-ToF) mass spectrometry utilizing protein chip technology and artificial neural networks (ANN). Serum samples from 55 additional patients after complete dissection of regional lymph node metastases (AJCC stage III), with 28 of 55 patients relapsing within the first year of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-beta was measured using a sandwich immunoluminometric assay. Analysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84 (88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage III serum samples could be correctly assigned as progressors or nonprogressors using random sample cross-validation statistical methodologies. Twenty-three (82%) of 28 stage III progressors were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28 could be detected by S100-beta. Validation of these findings may enable proteomic profiling to become a valuable tool for identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.
doi_str_mv 10.1200/JCO.2005.03.164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68093889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68093889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-29123df89f7abeda271e59d58d31fd328342967989425bbc74eacb21c9a840f83</originalsourceid><addsrcrecordid>eNpFkE1rHCEYgKW0NJu0596Kl6an2fg56rHdNP0gIYG00Js4zjsbw4yTqktofn0cdiGnV-R5H_RB6AMla8oIOfu1uV7XKdeEr2krXqEVlUw1Skn5Gq2I4qyhmv89Qsc53xNChebyLTqiLZHUSLlCT7eQdhO-SXOBeQoeX4S4hfSQQiz1hM9D9ilMIboCGX-F8ggQ8WYMMXg34tvitvXexb4qoA--5GUFXIbFuU2Qc5gjDhFfwejiPDl840qAWPI79GZwY4b3h3mC_lx8-7350Vxef_-5-XLZeCFEaZihjPeDNoNyHfSOKQrS9FL3nA49Z5oLZlpltBFMdp1XApzvGPXGaUEGzU_Q6d77kOZ_O8jFTvVTMNbnwLzLttXEcK1NBc_2oE9zzgkGWzNMLv23lNglt6257ZLbEm5r7rrx8aDedRP0L_yhbwU-HQCXa68huehDfuEU0Yy3C_d5z92F7d1jSGDz5Maxapm99zPjljEridb8GTLvlvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68093889</pqid></control><display><type>article</type><title>Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients</title><source>MEDLINE</source><source>American Society of Clinical Oncology Online Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MIAN, Shahid ; UGUREL, Selma ; PARKINSON, Erika ; SCHLENZKA, Iris ; DRYDEN, Ian ; LANCASHIRE, Lee ; BALL, Graham ; CREASER, Colin ; REES, Robert ; SCHADENDORF, Dirk</creator><creatorcontrib>MIAN, Shahid ; UGUREL, Selma ; PARKINSON, Erika ; SCHLENZKA, Iris ; DRYDEN, Ian ; LANCASHIRE, Lee ; BALL, Graham ; CREASER, Colin ; REES, Robert ; SCHADENDORF, Dirk</creatorcontrib><description>Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-beta is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular profiling of the serum proteome could discriminate between early- and late-stage melanoma and predict disease progression. Two hundred five serum samples from 101 early-stage (American Joint Committee on Cancer [AJCC] stage I) and 104 advanced stage (AJCC stage IV) melanoma patients were analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-ToF) mass spectrometry utilizing protein chip technology and artificial neural networks (ANN). Serum samples from 55 additional patients after complete dissection of regional lymph node metastases (AJCC stage III), with 28 of 55 patients relapsing within the first year of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-beta was measured using a sandwich immunoluminometric assay. Analysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84 (88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage III serum samples could be correctly assigned as progressors or nonprogressors using random sample cross-validation statistical methodologies. Twenty-three (82%) of 28 stage III progressors were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28 could be detected by S100-beta. Validation of these findings may enable proteomic profiling to become a valuable tool for identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.</description><identifier>ISSN: 0732-183X</identifier><identifier>EISSN: 1527-7755</identifier><identifier>DOI: 10.1200/JCO.2005.03.164</identifier><identifier>PMID: 16051955</identifier><language>eng</language><publisher>Baltimore, MD: American Society of Clinical Oncology</publisher><subject>Biological and medical sciences ; Disease Progression ; Humans ; Mass Spectrometry ; Medical sciences ; Melanoma - pathology ; Neoplasm Recurrence, Local ; Neural Networks (Computer) ; Predictive Value of Tests ; Prognosis ; Protein Array Analysis ; Proteomics ; Risk Factors ; Sensitivity and Specificity ; Skin Neoplasms - pathology ; Tumors</subject><ispartof>Journal of clinical oncology, 2005-08, Vol.23 (22), p.5088-5093</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-29123df89f7abeda271e59d58d31fd328342967989425bbc74eacb21c9a840f83</citedby><cites>FETCH-LOGICAL-c444t-29123df89f7abeda271e59d58d31fd328342967989425bbc74eacb21c9a840f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3730,27928,27929</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17082365$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16051955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MIAN, Shahid</creatorcontrib><creatorcontrib>UGUREL, Selma</creatorcontrib><creatorcontrib>PARKINSON, Erika</creatorcontrib><creatorcontrib>SCHLENZKA, Iris</creatorcontrib><creatorcontrib>DRYDEN, Ian</creatorcontrib><creatorcontrib>LANCASHIRE, Lee</creatorcontrib><creatorcontrib>BALL, Graham</creatorcontrib><creatorcontrib>CREASER, Colin</creatorcontrib><creatorcontrib>REES, Robert</creatorcontrib><creatorcontrib>SCHADENDORF, Dirk</creatorcontrib><title>Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients</title><title>Journal of clinical oncology</title><addtitle>J Clin Oncol</addtitle><description>Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-beta is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular profiling of the serum proteome could discriminate between early- and late-stage melanoma and predict disease progression. Two hundred five serum samples from 101 early-stage (American Joint Committee on Cancer [AJCC] stage I) and 104 advanced stage (AJCC stage IV) melanoma patients were analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-ToF) mass spectrometry utilizing protein chip technology and artificial neural networks (ANN). Serum samples from 55 additional patients after complete dissection of regional lymph node metastases (AJCC stage III), with 28 of 55 patients relapsing within the first year of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-beta was measured using a sandwich immunoluminometric assay. Analysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84 (88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage III serum samples could be correctly assigned as progressors or nonprogressors using random sample cross-validation statistical methodologies. Twenty-three (82%) of 28 stage III progressors were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28 could be detected by S100-beta. Validation of these findings may enable proteomic profiling to become a valuable tool for identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.</description><subject>Biological and medical sciences</subject><subject>Disease Progression</subject><subject>Humans</subject><subject>Mass Spectrometry</subject><subject>Medical sciences</subject><subject>Melanoma - pathology</subject><subject>Neoplasm Recurrence, Local</subject><subject>Neural Networks (Computer)</subject><subject>Predictive Value of Tests</subject><subject>Prognosis</subject><subject>Protein Array Analysis</subject><subject>Proteomics</subject><subject>Risk Factors</subject><subject>Sensitivity and Specificity</subject><subject>Skin Neoplasms - pathology</subject><subject>Tumors</subject><issn>0732-183X</issn><issn>1527-7755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkE1rHCEYgKW0NJu0596Kl6an2fg56rHdNP0gIYG00Js4zjsbw4yTqktofn0cdiGnV-R5H_RB6AMla8oIOfu1uV7XKdeEr2krXqEVlUw1Skn5Gq2I4qyhmv89Qsc53xNChebyLTqiLZHUSLlCT7eQdhO-SXOBeQoeX4S4hfSQQiz1hM9D9ilMIboCGX-F8ggQ8WYMMXg34tvitvXexb4qoA--5GUFXIbFuU2Qc5gjDhFfwejiPDl840qAWPI79GZwY4b3h3mC_lx8-7350Vxef_-5-XLZeCFEaZihjPeDNoNyHfSOKQrS9FL3nA49Z5oLZlpltBFMdp1XApzvGPXGaUEGzU_Q6d77kOZ_O8jFTvVTMNbnwLzLttXEcK1NBc_2oE9zzgkGWzNMLv23lNglt6257ZLbEm5r7rrx8aDedRP0L_yhbwU-HQCXa68huehDfuEU0Yy3C_d5z92F7d1jSGDz5Maxapm99zPjljEridb8GTLvlvg</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>MIAN, Shahid</creator><creator>UGUREL, Selma</creator><creator>PARKINSON, Erika</creator><creator>SCHLENZKA, Iris</creator><creator>DRYDEN, Ian</creator><creator>LANCASHIRE, Lee</creator><creator>BALL, Graham</creator><creator>CREASER, Colin</creator><creator>REES, Robert</creator><creator>SCHADENDORF, Dirk</creator><general>American Society of Clinical Oncology</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050801</creationdate><title>Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients</title><author>MIAN, Shahid ; UGUREL, Selma ; PARKINSON, Erika ; SCHLENZKA, Iris ; DRYDEN, Ian ; LANCASHIRE, Lee ; BALL, Graham ; CREASER, Colin ; REES, Robert ; SCHADENDORF, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-29123df89f7abeda271e59d58d31fd328342967989425bbc74eacb21c9a840f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biological and medical sciences</topic><topic>Disease Progression</topic><topic>Humans</topic><topic>Mass Spectrometry</topic><topic>Medical sciences</topic><topic>Melanoma - pathology</topic><topic>Neoplasm Recurrence, Local</topic><topic>Neural Networks (Computer)</topic><topic>Predictive Value of Tests</topic><topic>Prognosis</topic><topic>Protein Array Analysis</topic><topic>Proteomics</topic><topic>Risk Factors</topic><topic>Sensitivity and Specificity</topic><topic>Skin Neoplasms - pathology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MIAN, Shahid</creatorcontrib><creatorcontrib>UGUREL, Selma</creatorcontrib><creatorcontrib>PARKINSON, Erika</creatorcontrib><creatorcontrib>SCHLENZKA, Iris</creatorcontrib><creatorcontrib>DRYDEN, Ian</creatorcontrib><creatorcontrib>LANCASHIRE, Lee</creatorcontrib><creatorcontrib>BALL, Graham</creatorcontrib><creatorcontrib>CREASER, Colin</creatorcontrib><creatorcontrib>REES, Robert</creatorcontrib><creatorcontrib>SCHADENDORF, Dirk</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MIAN, Shahid</au><au>UGUREL, Selma</au><au>PARKINSON, Erika</au><au>SCHLENZKA, Iris</au><au>DRYDEN, Ian</au><au>LANCASHIRE, Lee</au><au>BALL, Graham</au><au>CREASER, Colin</au><au>REES, Robert</au><au>SCHADENDORF, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients</atitle><jtitle>Journal of clinical oncology</jtitle><addtitle>J Clin Oncol</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>23</volume><issue>22</issue><spage>5088</spage><epage>5093</epage><pages>5088-5093</pages><issn>0732-183X</issn><eissn>1527-7755</eissn><abstract>Currently known serum biomarkers do not predict clinical outcome in melanoma. S100-beta is widely established as a reliable prognostic indicator in patients with advanced metastatic disease but is of limited predictive value in tumor-free patients. This study was aimed to determine whether molecular profiling of the serum proteome could discriminate between early- and late-stage melanoma and predict disease progression. Two hundred five serum samples from 101 early-stage (American Joint Committee on Cancer [AJCC] stage I) and 104 advanced stage (AJCC stage IV) melanoma patients were analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (ToF; MALDI-ToF) mass spectrometry utilizing protein chip technology and artificial neural networks (ANN). Serum samples from 55 additional patients after complete dissection of regional lymph node metastases (AJCC stage III), with 28 of 55 patients relapsing within the first year of follow-up, were analyzed in an attempt to predict disease recurrence. Serum S100-beta was measured using a sandwich immunoluminometric assay. Analysis of 205 stage I/IV serum samples, utilizing a training set of 94 of 205 and a test set of 15 of 205 samples for 32 different ANN models, revealed correct stage assignment in 84 (88%) of 96 of a blind set of 96 of 205 serum samples. Forty-four (80%) of 55 stage III serum samples could be correctly assigned as progressors or nonprogressors using random sample cross-validation statistical methodologies. Twenty-three (82%) of 28 stage III progressors were correctly identified by MALDI-ToF combined with ANN, whereas only six (21%) of 28 could be detected by S100-beta. Validation of these findings may enable proteomic profiling to become a valuable tool for identifying high-risk melanoma patients eligible for adjuvant therapeutic interventions.</abstract><cop>Baltimore, MD</cop><pub>American Society of Clinical Oncology</pub><pmid>16051955</pmid><doi>10.1200/JCO.2005.03.164</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0732-183X
ispartof Journal of clinical oncology, 2005-08, Vol.23 (22), p.5088-5093
issn 0732-183X
1527-7755
language eng
recordid cdi_proquest_miscellaneous_68093889
source MEDLINE; American Society of Clinical Oncology Online Journals; EZB-FREE-00999 freely available EZB journals
subjects Biological and medical sciences
Disease Progression
Humans
Mass Spectrometry
Medical sciences
Melanoma - pathology
Neoplasm Recurrence, Local
Neural Networks (Computer)
Predictive Value of Tests
Prognosis
Protein Array Analysis
Proteomics
Risk Factors
Sensitivity and Specificity
Skin Neoplasms - pathology
Tumors
title Serum Proteomic Fingerprinting Discriminates Between Clinical Stages and Predicts Disease Progression in Melanoma Patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serum%20Proteomic%20Fingerprinting%20Discriminates%20Between%20Clinical%20Stages%20and%20Predicts%20Disease%20Progression%20in%20Melanoma%20Patients&rft.jtitle=Journal%20of%20clinical%20oncology&rft.au=MIAN,%20Shahid&rft.date=2005-08-01&rft.volume=23&rft.issue=22&rft.spage=5088&rft.epage=5093&rft.pages=5088-5093&rft.issn=0732-183X&rft.eissn=1527-7755&rft_id=info:doi/10.1200/JCO.2005.03.164&rft_dat=%3Cproquest_cross%3E68093889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68093889&rft_id=info:pmid/16051955&rfr_iscdi=true